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Symmetric tensor powers of graphs

Weymar Astaiza a, Alexander J. Barrios b, Henry Chimal-Dzul c, Stephan
Ramon Garcia d, Jaaziel Lopez de la Luz e, Victor H. Moll f , Yunied Puig g,

and Diego Villamizar h

Abstract. We introduce the symmetric tensor power of graphs and explore the
fundamental properties of this operation. A wide range of intriguing phenom-

ena occur when one considers symmetric tensor powers of familiar graphs. We
conclude with a host of open questions that we hope will spur future research.

1. Introduction

A great variety of graph products, and hence graph powers, exist in the litera-
ture [12]. In this paper we introduce the symmetric tensor power of graphs, a novel
graph power that displays a variety of intriguing phenomena. Although the resulting
graphs often bear surprising features, the approach is well-motivated algebraically.
For example, the naturalness of the symmetric tensor power is illustrated by its com-
patibility with graph spectra.

It is surprising that symmetric tensor powers of graphs do not seem to have been
explored before since symmetric tensor powers have a long and storied history in
mathematics and allied fields. For example, they appear in multilinear algebra [10],
representation theory [7], abstract algebra [3, 5], quantum algebra [15], and, more
recently, in function-related operator theory [8]. In quantum mechanics, the symmetric
Fock space, which models the states of many-body bosonic systems, is spanned by
the symmetric tensors of all ranks [17]; noncommutative q-analogues have also been
considered [6]. The Hamiltonians of such systems are symmetric tensor products of
certain Hermitian operators [2,4,9,13,14]. The symmetric Fock space even finds use
in theoretical computer science [1].

The structure of this paper is as follows. Section 2 covers some linear-algebraic
preliminaries before symmetric tensor powers of graphs are defined in Section 3 (with
some computational material deferred until Appendix A). The connection between this
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operation and graph spectra is considered in Section 4. We make several combinatorial
observations in Section 5 and study in Section 6 several curious phenomena that arise
for familiar graphs. Section 7 concerns the Wiener index of certain graphs. We
conclude with a host of open questions about symmetric tensor powers of graphs,
which indicates that the subject is fertile ground for future exploration, in Section 8.

2. Linear-algebraic preliminaries

Since this paper is meant to be self-contained, we begin with some linear-algebraic
prerequisites. Readers who are familiar with symmetric tensor powers as a general
abstract construction may proceed to Section 3. In what follows, we denote by Mn

the set of real n × n matrices, N := {1, 2, . . .} the set of natural numbers, [n] :=
{1, 2, . . . , n}, and |X| the cardinality of a set X.

Let V denote a real inner-product space with orthonormal basis v1, v2, . . . , vn.
For k ∈ N, the kth tensor power of V is the nk-dimensional inner-product space V⊗k
spanned by the simple tensors vi1 ⊗ vi2 ⊗ · · · ⊗ vik , in which (i1, i2, . . . , ik) ∈ [n]k, and
endowed with the inner product that linearly extends

(2.1) 〈vi1 ⊗ vi2 ⊗ · · · vik , vj1 ⊗ vj2 ⊗ · · · ⊗ vjk〉 := 〈vi1 , vj1〉〈vi2 , vj2〉 · · · 〈vik , vjk〉.

In particular, the vi1 ⊗ vi2 ⊗ · · · ⊗ vik comprise an orthonormal basis of V⊗k.
The symmetric group Sk acts on [n]k by permutation. Let Orb(i) denote the

orbit of i = (i1, i2, . . . , ik) under this action; that is, j ∈ Orb(i) if and only if j is a
permutation of i. We let Sk permute simple tensors in the analogous manner.

Let V�k denote the subspace of V⊗k spanned by the symmetric tensors

(2.2) vi1 � vi2 � · · · � vik :=
1

k!

∑
σ∈Sk

viσ(1) ⊗ viσ(2) ⊗ · · · ⊗ viσ(k) .

Symmetric tensors are invariant under the action of Sk, so there is a representative
k-tuple for (2.2) such that i1 6 i2 6 · · · 6 ik. We have dimV�k =

(
n+k−1

k

)
.

Example 2.1. Let n = k = 2. Then V has orthonormal basis v1, v2 and V⊗2

is 4-dimensional with orthonormal basis v1 ⊗ v1, v1 ⊗ v2, v2 ⊗ v1, v2 ⊗ v2. The S2-
orbits in V⊗2 are Orb(v1 ⊗ v1) = {v1 ⊗ v1}, Orb(v1 ⊗ v2) = {v1 ⊗ v2, v2 ⊗ v1}, and
Orb(v2⊗ v2) = {v2⊗ v2}. Thus, v1⊗ v1, 1

2 (v1⊗ v2 + v2⊗ v1), v2� v2 comprise a basis

for V�2, which is
(

2+2−1
2

)
=
(

3
2

)
= 3 dimensional.

For i = (i1, i2, . . . , ik) ∈ [n]k, let m(i) = (m1,m2, . . . ,mn), in which each m` is
the number of occurrences of ` in i. For example, if i = (1, 3, 2, 4, 3, 1) ∈ [5]6, then
m(i) = (2, 1, 2, 1, 0). We may write m if the dependence on i is clear. There are(

k

m

)
:=

k!

m1!m2! · · ·mn!

elements of [n]k that give rise to the same symmetric tensor vi1 � vi2 � · · · � vik . The
quantity above equals the cardinality of Orb(i).
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Lemma 2.1. Fix n, k ∈ N and let N =
(
n+k−1

k

)
. The N vectors

(2.3) ui :=

(
k

m(i)

)1/2

vi1 � vi2 · · · � vik ,

where i = (i1, i2, . . . , ik) ∈ [n]k is nondecreasing, form an orthonormal basis for V�k.

Proof. If i, j ∈ [n]k are nondecreasing and distinct, they are in different Sk orbits
in [n]k, so (2.1) ensures that ui and uj are orthogonal. Since dimV�k = N , we need
only show that each ui is a unit vector. To this end, observe that for each of the N
nondecreasing i = (i1, i2, . . . , ik) ∈ [n]k,

〈 k⊙
`=1

i`,

k⊙
`=1

i`

〉
=

〈
1

k!

∑
σ∈Sk

k⊗
`=1

iσ(`),
1

k!

∑
τ∈Sk

k⊗
`=1

iτ(`)

〉

=
1

(k!)2

∑
σ∈Sk

( ∑
τ∈Sk

k∏
`=1

〈
iσ(`), iτ(`)

〉)
=

1

(k!)2

∑
σ∈Sk

∣∣{τ ∈ Sk : iτ(`) = iσ(`) for all ` ∈ [n]
}∣∣

=
1

(k!)2

∑
σ∈Sk

m1!m2! · · ·mn! =
m1!m2! · · ·mn!

k!
=

(
k

m(i)

)−1

. �

Let A be a linear operator on V. For i, j ∈ [n], the (i, j) matrix entry of A with
respect to the orthonormal basis v1, v2, . . . , vn is [A]i,j = 〈Avj , vi〉. Define

A�k(vi1 � vi2 � · · · � vik) :=
1

k!

∑
σ∈Sk

(Aviσ(1))⊗ (Aviσ(2))⊗ · · · ⊗ (Aviσ(k))

and extend this by linearity to V�k. The right side above is permutation invariant, so
A�k is a linear transformation from V�k to itself.

Lemma 2.2. The matrix entries of A�k with respect to the orthonormal basis (2.3)
are

[A�k]i,j =
1√(

k
m(i)

)(
k

m(j)

) ∑
p∈Orb(i)
q∈Orb(j)

k∏
`=1

[A]p`,q` ,

in which i, j run over the N =
(
n+k−1

k

)
nondecreasing elements of [n]k and p =

(p1, p2, . . . , pk), q = (q1, q2, . . . , qk) belong to the Sk orbits of i and j in [n]k, respec-
tively. In particular, A�k is real symmetric if A is real symmetric.
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Proof. A computation using stabilizers gives

[A�k]i,j =
〈
A�kuj, ui

〉
=

√(
k

m(i)

)(
k

m(j)

)〈
A�k(vj1 � vj2 · · · · � vjk), vi1 � vi2 · · · · � vik

〉
=

√(
k

m(i)

)(
k

m(j)

) ∑
σ,τ∈Sk

〈 k⊗
`=1

Avjσ(`) ,

k⊗
`=1

viτ(`)

〉

=

√(
k

m(i)

)(
k

m(j)

) ∑
σ,τ∈Sk

k∏
`=1

〈Avjσ(`) , viτ(`)〉

=

√(
k

m(i)

)(
k

m(j)

) ∑
σ,τ∈Sk

k∏
`=1

[A]jσ(`),iτ(`)

=

√(
k

m(i)

)(
k

m(j)

) ∑
p∈Orb(i)
q∈Orb(j)

(
k

m(i)

)−1(
k

m(j)

)−1 k∏
`=1

[A]p`,q`

=
1√(

k
m(i)

)(
k

m(j)

) ∑
p∈Orb(i)
q∈Orb(j)

k∏
`=1

[A]p`,q` . �

We often identify V with Rn and v1, v2, . . . , vn with the standard basis. Thus, we
identify the linear operator A on V with its matrix representation [aij ] ∈ Mn with
respect to v1, v2, . . . , vn. Then A�k acts on the N -dimensional space V�k, in which
N =

(
n+k−1

k

)
. We identify A�k ∈ MN with its matrix representation with respect to

the orthonormal basis defined in Lemma 2.1.

Example 2.2. Let n = k = 2 and A = [aij ] ∈ M2. Then A�2 ∈ M3 since

N =
(

2+2−1
2

)
=
(

3
2

)
= 3. Proposition 2.2 and Table 1 produce

(2.4) A�2 =

 a2
11 a2

12

√
2a11a12

a2
21 a2

22

√
2a21a22√

2a11a12

√
2a21a22 a11a22 + a12a21

 .
For example,

[A�2]1,3 =
1√

2!
2!0!
· 2!
1!1!

∑
p∈{(1,1)}

q∈{(1,2),(2,1)}

[A]p1,q1 [A]p2,q2 =
1√
2
(a11a12 + a12a11) =

√
2(a11a12).
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index i m(i)
(
k

m(i)

)
Orb(i)

1 (1, 1) (2, 0) 2!
2!0! = 1 {(1, 1)}

2 (2, 2) (0, 2) 2!
0!2! = 1 {(2, 2)}

3 (1, 2) (1, 1) 2!
1!1! = 2 {(1, 2), (2, 1)}

Table 1. For n = k = 2, there are N = 3 nondecreasing elements of [n]k.

index i m(i)
(
k

m(i)

)
Orb(i)

1 (1, 1, 1) (3, 0) 3!
3!0! = 1 {(1, 1, 1)}

2 (2, 2, 2) (0, 3) 3!
0!3! = 1 {(2, 2, 2)}

3 (1, 1, 2) (2, 1) 3!
2!1! = 3 {(1, 1, 2), (1, 2, 1), (2, 1, 1)}

4 (1, 2, 2) (1, 2) 3!
1!2! = 3 {(1, 2, 2), (2, 1, 2), (2, 2, 1)}

Table 2. For n = 2 and k = 3, there are N = 4 nondecreasing elements of
[n]k.

Example 2.3. Let n = 2, k = 3, and A = [aij ] ∈ M3. Then A�3 ∈ M4 since

N =
(

3+2−1
3

)
=
(

4
3

)
= 4. Proposition 2.2 and Table 2 produce

(2.5) A�3 =


a3

11 a3
12

√
3a2

11a12

√
3a11a

2
12

a3
21 a3

22

√
3a2

21a22

√
3a21a

2
22√

3a2
11a21

√
3a2

12a22 2a11a12a21 + a2
11a22 a2

12a21 + 2a11a12a22√
3a11a

2
21

√
3a12a

2
22 a12a

2
21 + 2a11a21a22 2a12a21a22 + a11a

2
22

 .

For example,

[A�3]3,4 =
1√

3!
2!1! ·

3!
1!2!

∑
p∈{(1,1,2),(1,2,1),(2,1,1)}
q∈{(1,2,2),(2,1,2),(2,2,1)}

[A]p1,q1 [A]p2,q2 [A]p3,q3

=
1

3
(a11a12a22 + a12a11a22 + a12a12a21 + a11a22a12 + a12a21a12

+ a12a22a11 + a21a12a12 + a22a11a12 + a22a12a11)

= a2
12a21 + 2a11a12a22.
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index i m(i)
(
k

m(i)

)
Orb(i)

1 (1, 1) (2, 0, 0) 2!
2!0!0! = 1 {(1, 1)}

2 (2, 2) (0, 2, 0) 2!
0!2!0! = 1 {(2, 2)}

3 (3, 3) (0, 0, 2) 2!
0!0!2! = 1 {(3, 3)}

4 (1, 2) (1, 1, 0) 2!
1!1!0! = 2 {(1, 2), (2, 1)}

5 (1, 3) (1, 0, 1) 2!
1!0!1! = 2 {(1, 3), (3, 1)}

6 (2, 3) (0, 1, 1) 2!
0!1!1! = 2 {(2, 3), (3, 2)}

Table 3. For n = 3 and k = 2, there are N = 6 nondecreasing elements of
[n]k.

Example 2.4. Let n = 3, k = 2, and A = [aij ] ∈ M3. Then A�3 ∈ M6 since

N =
(

3+2−1
2

)
=
(

4
2

)
= 6. Proposition 2.2 and Table 3 give

(2.6)

A�3 =


a211 a212 a213

√
2a11a12

√
2a11a13

√
2a12a13

a221 a222 a223
√

2a21a22
√

2a21a23
√

2a22a23

a231 a232 a233
√

2a31a32
√

2a31a33
√

2a32a33
√

2a11a21
√

2a12a22
√

2a13a23 a12a21 + a11a22 a13a21 + a11a23 a13a22 + a12a23
√

2a11a31
√

2a12a32
√

2a13a33 a12a31 + a11a32 a13a31 + a11a33 a13a32 + a12a33
√

2a21a31
√

2a22a32
√

2a23a33 a22a31 + a21a32 a23a31 + a21a33 a23a32 + a22a33

.

3. Symmetric tensor powers of graphs

We are now ready to define the symmetric tensor powers of a graph.

Definition 3.1. Let G = (V,E, ω) denote a weighted graph with vertex set
V = {v1, v2, . . . , vn}, edge set E, and edge-weight function ω; nonexistent edges have

weight 0. The vertices of the kth symmetric tensor power G�k are the N =
(
n+k−1

k

)
nondecreasing elements i = (i1, i2, . . . , ik) of [n]k, each of which we may identify with
the corresponding symmetric tensor vi1�vi2�· · ·�vik or its normalization ui in (2.3).
The edge weights are

(3.1) ω�k(i, j) =
1√(

k
m(i)

)(
k

m(j)

) ∑
p∈Orb(i)
q∈Orb(j)

k∏
`=1

ω(vp` , vq`).

The map G 7→ G�k is well defined up to graph isomorphism; see Appendix A. If
A is the adjacency matrix of G, then A�k is the adjacency matrix of G�k.

Example 3.1. Let G = K3 be the complete graph on three vertices v1, v2, v3.

Its adjacency matrix A =
[

0 1 1
1 0 1
1 1 0

]
acts naturally on the inner-product space V with



SYMMETRIC TENSOR POWERS OF GRAPHS 19

1

2

3

(a) The complete graph K3

11

22

33 12

13

23

√
2

√
2

√
2

(b) Its second symmetric tensor power K�2
3

Figure 1. The complete graph K3 and its second symmetric tensor power. Sym-
metric tensor powers of unweighted loopless graphs can be weighted and may have
loops.

orthonormal basis v1, v2, v3. Then V⊗2 has orthonormal basis

v1 ⊗ v1, v1 ⊗ v2, v1 ⊗ v3, v2 ⊗ v1, v2 ⊗ v2, v2 ⊗ v3, v3 ⊗ v1, v3 ⊗ v2, v3 ⊗ v3.

The symmetric group S2 produces N =
(

3+2−1
2

)
= 6 orbits in [3]2, which yields

{v1 ⊗ v1}, {v2 ⊗ v2}, {v3 ⊗ v3}, {v1 ⊗ v2, v2 ⊗ v1}, {v1 ⊗ v3, v3 ⊗ v1}, {v2 ⊗ v3, v3 ⊗ v2}.

Each orbit contains a nondecreasing representative; these are, respectively,

v1 ⊗ v1, v2 ⊗ v2, v3 ⊗ v3, v1 ⊗ v2, v1 ⊗ v3, v2 ⊗ v3.

The orthonormal basis provided by Lemma 2.1 is

u(1,1) = v1 � v1, u(2,2) = v2 � v2, u(3,3) = v3 � v3,

u(2,3) =
√

2(v2 � v3), u(1,3) =
√

2(v1 � v3), u(1,2) =
√

2(v1 � v2),

and Lemma 2.2 provides the adjacency matrix of K�2
3 :

A�2 =


0 1 1 0 0

√
2

1 0 1 0
√

2 0

1 1 0
√

2 0 0

0 0
√

2 1 1 1

0
√

2 0 1 1 1√
2 0 0 1 1 1

 .
Note that K3 (Figure 1a) is a subgraph of K�2

3 (Figure 1b).

Example 3.2. Let P3 denote the path graph on three vertices (Figure 2a). Its sec-
ond symmetric tensor power P�2

3 (Figure 2c) is obtained from the tensor (Kronecker)
power P⊗2 (Figure 2b) by identifying ordered pairs in the same S2 orbit, selecting
nondecreasing representatives, and adding weights according to (3.1).

Examples 3.1 and 3.2 suggest that an (unweighted) graph is a subgraph of its
symmetric tensor powers. The next theorem establishes this fact.
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3

2

1

(a) P3

11 12 13

21 22 23

31 32 33

(b) P⊗2
3

11

22

33

12

13

23

√
2

(c) P�2
3

Figure 2. The symmetric tensor power P�2
3 of the path graph P3

is obtained by identifying vertices in the tensor (Kronecker) power
P⊗2

3 and adding the appropriate weights. Edge weights equal to 1 are
suppressed.

1

2

3 4

56

(a) An unweighted graph
G

11

22

33 44

5566

12

13

14

15

1623

24

25

26

34

3536

45 46

56

√
2

√
2

√
2

√
2

√
2

(b) G is a subgraph of the disconnected graph G�2

Figure 3. Illustration of Theorem 3.1.

Theorem 3.1. If G is an unweighted graph and k ∈ N, then G is a subgraph of
G�k.

Proof. Let G be an unweighted graph on n vertices, with adjacency matrix A.
Let i = (i, i, . . . , i) ∈ [n]k and j = (j, j, . . . , j) ∈ [n]k. Then m(i) and m(j) are k
times the standard basis vectors in Rn that have their 1s in the ith and jth positions,
respectively. Since Orb(i) = {i} and Orb(j) = {j}, Proposition 2.2 ensures that

[A�k]i,j =
1√(

k
m(i)

)(
k

m(j)

) ∑
p∈Orb(i)
q∈Orb(j)

k∏
`=1

[A]p`,q` =

k∏
`=1

[A]i,j = [A]i,j

because the matrix entries of A belong to {0, 1}. �

The previous theorem is illustrated in Figures 3 and 4.
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(a) G

11
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(b) G�2
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222
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√
3

√
3

2

(c) G�3

1111

2222
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1122
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2

√
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√
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3

(d) G�4

11111

22222

411112

11122

3

11222

12222

√
5

√
10

√
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√
5

3
√
2

2
√
2

(e) G�5

Figure 4. Symmetric tensor powers of the “scepter” graph G; edge weights with
value 1 are suppressed. Theorem 3.1 ensures that G appears as a subgraph in G�k
for k ∈ N.

Proposition 3.1. (a) Let G be a graph that contains a loop, then as unweighted
graphs G�k1 is a subgraph of G�k2 for all k1 6 k2. (b) Let G be a nonempty graph,
then as unweighted graphs G�k1 is a subgraph of G�k1+2` for all ` > 0.

Proof. (a) We may assume the loop is at vertex v1. Notice that if vi is adjacent
to vj in G�k1 , then v1 � v1 � · · · � v1︸ ︷︷ ︸

k2−k1

�vi and v1 � v1 � · · · � v1︸ ︷︷ ︸
k2−k1

�vj are adjacent.

(b) We may assume v1 and v2 are adjacent in G. If vi is adjacent to vj in G�k1 , then
v1 � v2 � · · · � v1 � v2︸ ︷︷ ︸

k2−k1
2

�vi and v1 � v2 � · · · � v1 � v2︸ ︷︷ ︸
k2−k1

2

�vj are adjacent. �
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4. Compatibility with graph spectra

The spectrum of a graph is the spectrum (multiset of eigenvalues) of its adjacency
matrix. This is well defined since isomorphic graphs correspond to permutation-similar
adjacency matrices, and similar matrices have the same spectrum. Symmetric tensor
powers respect graph spectra. Although the next result is familiar to representation
theorists and mathematical physicists, we prove it for the sake of graph theorists to
whom it may be novel.

Theorem 4.1. Let G be a graph on n vertices whose adjacency matrix A has
spectrum λ1, λ2, . . . , λn. Then the spectrum of G�k consists of the

(
n+k−1

k

)
products

λi1λi2 · · ·λik with 1 6 i1 6 i2 6 · · · 6 ik 6 n; these are all of the eigenvalues of A�k.

Proof. Let G have vertices v1, v2, . . . , vn. For 1 6 i1 6 i2 6 · · · 6 ik 6 n,

A�k(vi1 � vi2 � · · · � vik) =
1

k!

∑
σ∈Sk

(Aviσ(1))⊗ (Aviσ(2))⊗ · · · ⊗ (Aviσ(k))

=
1

k!

∑
σ∈Sk

(λi1viσ(1))⊗ (λi2viσ(2))⊗ · · · ⊗ (λikviσ(k))

= λi1λi2 · · ·λik
(

1

k!

∑
σ∈Sk

viσ(1) ⊗ viσ(2) ⊗ · · · ⊗ viσ(k)
)

= λi1λi2 · · ·λik(vi1 � vi2 � · · · � vik).

Thus, vi1�vi2�· · ·�vik is an eigenvector of A�k with eigenvalue λi1λi2 · · ·λik . There
are no others since the vi1 � vi2 � · · · � vik form a basis for V�k. �

Example 4.1. Figure 4 illustrates the graphs G�k for k = 2, 3, 4, 5, in which G is
the scepter graph (Figure 4a). The corresponding adjacency matrices are

A =

[
1 1
1 0

]
, A�2 =

 1 1
√

2
1 0 0√
2 0 1

 , A�3 =

[
1 1

√
3
√

3
1 0 0 0√
3 0 2 1√
3 0 1 0

]
,

A�4 =

 1 1 2
√

6 2
1 0 0 0 0
2 0 3

√
6 1√

6 0
√

6 1 0
2 0 1 0 0

 , A�5 =


1 1

√
5
√

10
√

10
√

5
1 0 0 0 0 0√
5 0 4 3

√
2 2
√

2 1√
10 0 3

√
2 3 1 0√

10 0 2
√

2 1 0 0√
5 0 1 0 0 0

 .
The respective graph spectra are

G : 1
2 (1−

√
5), 1

2 (1 +
√

5),

G�2 : − 1, 1
2 (3−

√
5), 1

2 (
√

5 + 3),

G�3 : 1
2 (−1−

√
5), 2−

√
5, 1

2 (−1 +
√

5),
√

5 + 2,

G�4 : 1, 1
2 (7− 3

√
5), 1

2 (−
√

5− 3), 1
2 (
√

5− 3), 1
2 (3
√

5 + 7),

G�5 : 1
2 (11− 5

√
5), −

√
5− 2, 1

2 (1−
√

5),
√

5− 2, 1
2 (
√

5 + 1), 1
2 (5
√

5 + 11).
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These agree with the results of Theorem 4.1. The eigenvalues λ1 = 1
2 (1 −

√
5) and

λ2 = 1
2 (1 +

√
5) of A give rise to the eigenvalues of A�2:

λ2
1 = 1

2 (3−
√

5), λ1λ2 = −1, and λ2
2 = 1

2 (3 +
√

5).

A similar calculation shows that the eigenvalues of A�3 are

λ3
1 = 2−

√
5, λ2

1λ2 = 1
2 (−1 +

√
5), λ1λ

2
2 = 1

2 (−1−
√

5), and λ3
2 =
√

5 + 2.

Theorem 4.1 provides convenient formulas for the trace and determinant of a
graph, that is, the trace and determinant of its adjacency matrix.

Corollary 4.1. Let G be a graph with spectrum λ1, λ2, . . . , λn and let k ∈
N. Then det(G�k) = (detG)(

n+k−1
n ) and tr(G�k) =

∑
i16i26···6ik λi1λi2 · · ·λik , the

complete homogeneous symmetric polynomial of degree k in the eigenvalues of G.

Proof. The trace of a graph G is the sum of the eigenvalues of its adjacency
matrix A, so the desired trace formula follows from Theorem 4.1. The determinant is
the product of the eigenvalues, so

det(A�k) =
∏

i=(i1,i2,...,ik)
16i16i26···6ik6n

n∏
j=1

λ
m(i)j
j =

n∏
i=1

λβii ,

in which βi is the number of times λi appears in the whole product. This is equivalent
to adding the contribution of each individual product, so

βi =

k∑
`=0

` ·
(
k − `+ n− 2

k − `

)
=

(
k + n− 1

n

)
,

in which the final equality arises as follows: let (x1, x2, · · · , xn) be a composition of k
into n nonnegative parts. Fix i ∈ [n] such that xi = ` and take out 0 6 r < ` from the
part xi to a new part xn+1. There are ` choices for r to take to the new part xn+1

and it cannot be 0 so xn+1 > 0, so we have taken one out, which adds up to k − 1,
and so these are compositions of k− 1 into n+ 1 nonnegative parts which are counted

by
(

(k−1)+n+1−1
n+1−1

)
=
(
n+k−1
n

)
. �

5. Combinatorial properties

The number |EG⊗k | of edges of a tensor (Kronecker) power G⊗k of an undirected
simple graph G is related to the original number of edges |EG | by |EG⊗k | = 2k−1|EG |k
[11]. This yields the upper bound in the next result. The lower bound is obtained by
noticing that an edge in G⊗k can be seen as an edge in G⊗k when one permute the
indices of one of the vertices, so |EG⊗k | 6 |EG�k | · k!.

Proposition 5.1. For a simple undirected graph, G we have

2k−1|EG |k

k!
6 |EG�k | 6 2k−1|EG |k.
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The number of edges adjacent to a vertex v of a graph G is the degree of v in
G, denoted degG v. This is the size of the set NG(v) = {u ∈ VG : {u, v} ∈ EG} of
neighboring vertices. The next proposition characterizes the neighbor set of a vertex
and gives a bound on its cardinality. The Cartesian product is to generate sequences
from the neighbours of elements in the vertex.

Proposition 5.2. Let G be an undirected graph with vertex set VG = {v1, v2, . . . , vn}
and let k ∈ N. For i ∈ VG�k (that is, i is a nondecreasing element of [n]k),

NG�k(i) =
{

j ∈ VG�k : Orb(j) ∩
(
N(v1)

m(i)1
G ×N(v2)

m(i)2
G × · · · ×N(vn)

m(i)n
G

)
6= ∅
}
.

Its cardinality is bounded by

degG�k(i) 6

(
|
⋃

m(x)i>0NG(vi)|+ k − 1

k

)
6

n∏
`=1

degG(v`)
m(x)` .

Proof. It follows from Proposition 2.2 that the positivity of an entry requires
the existence of (q, t) ∈ Orb(x)×Orb(y) such that ti ∈ NG(q`) for every `. Therefore,
the elements must belong to the union of the elements in x. The second part follows
from the first since there is a single neighboring set. �

If i = (v`, v`, . . . , v`), with v` repeated k times, then degG�k(i) =
(degG(v`)+k−1

k

)
since the neighbors of i are k-sequences of nondecreasing neighbors of v`. We can
completely characterize the number of loops, edges, and the degrees of vertices in the
second symmetric tensor power.

Proposition 5.3. Let G be an undirected graph with vertex set VG = {v1, v2, . . . , vn}.
(1) If i = (va, vb), then

degG�2(i) =

{(
degG(va)+1

2

)
if a = b,

degG(va) degG(vb)−
(|NG(va)∩NG(vb)|

2

)
if a < b.

(2) The number of loops on G�2 is EG + `d, where

`d =
∣∣{{v1, v2} 6∈ EG : {v1, v1}, {v2, v2} ∈ EG

}∣∣ ,
is the number of non-adjacent pairs of loops in G.

(3) The number of edges in G�2 is

1

2

EG + `d +
∑
i∈[n]

(degG(vi) + 1

2

)
+

∑
16i<j6n

degG(vi) degG(vj)−
∑

16i<j6n

(|NG(vi) ∩NG(vj)|
2

) .

Proof. (a) If a = b, Proposition 5.2 gives the result. If a 6= b, then every element
in degG�2(i) belongs to N(va) × N(vb). This overcounts the choices for which the
chosen vertices can be in either position of the tuple. Then take out the number of
ways to choose two elements in the intersection of the neighbours to obtain the result.

(b) There are two kinds of loops: those for which (a, b) goes to (b, a) in G�2 when
{a, b} ∈ EG or (a, b) goes to (a, b) when a and b have loops. This last case is counted
by `d when {a, b} 6∈ EG .
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(c) The result is now a consequence of the handshake lemma adding over the degrees
with the formula established above. �

Corollary 5.1. If G is 1-regular, then G�k is 1-regular.

Proof. Using the expression for the neighbourhood set, there is just one ele-
ment that connects for x ∈ VG�k , namely y such that the only element in N(v1)x1 ×
N(v2)x2 × · · · ×N(vn)xn is contained in Orb(y). �

Theorem 5.1 (Theorem 1 of [16]). (a) If G is connected and non-bipartite, then
G⊗2 is connected. (b) If G is connected and bipartite, then G⊗2 has two connected
components.

Corollary 5.2. (a) If G is connected and non-bipartite, then G�2 is connected.
(b) If G is connected and bipartite, then G�2 has two components.

Proof. (a) This follows from Theorem 5.1 and the graph-theoretic construction
of the symmetric tensor product.

(b) If (vi, vj) ∈ VG�2 , the connectivity of G provides a path from vi to vj . This path
lifts to a path in G⊗2 from (vi, vj) to (vj , vi), so identifying points in S2 orbits does
not decrease the number of connected components. �

Corollary 5.3. If G is a connected, non-bipartite, loopless graph, then G�k is
connected. In general, the number of connected components on G�k is at most 2k−1.

6. Properties of G�k for particular graphs G

A number of curious features arise when one considers symmetric tensor powers
of familiar graphs. In this section, we describe a variety of such phenomena.

6.1. Complete graphs with loops. The complete graph with loops on n ver-
tices, denoted Jn, is the graph with vertex set [n] and edge set [n]× [n]. Thus, all pairs
of vertices are adjacent and each vertex has a loop. Therefore, Jn has n+

(
n
2

)
=
(
n+1

2

)
edges and its adjacency matrix is the all-ones matrix; see Figure 5a.

Proposition 6.1. The weight of the edge connecting i and j in J�kn is
√(

k
m(i)

)(
k

m(j)

)
.

As unweighted graphs, J�kn = J(n+k−1
k ).

Proof. All vertices are connected, so this follows from Proposition 2.2. �

The weights in the loops of the second symmetric tensor power of Jn determine
the size of the orbit of the corresponding vertex; see Figure 5b.

Corollary 6.1. The number of edges in J�2
n is

((n+1
2 )+1

2

)
.

This agrees with Proposition 5.3. The resulting sequence 0, 1, 6, 21, 55, 120, 231, . . .
is A002817 in OEIS.



26 ASTAIZA, BARRIOS, CHIMAL-DZUL, GARCIA, DE LA LUZ, MOLL, PUIG, AND VILLAMIZAR

1

2 3

(a) J3

11

1

22 1

33

1

12
2

13

2

232

(b) J�2
3

Figure 5. J3, the complete graph with loops on three vertices, and its second
symmetric tensor power. In (b) red edges have weight

√
2, blue edges have weight

2, and black edges have weight 1.

6.2. Path graphs. The path graph Pn is the graph with adjacency matrix [aij ] ∈
Mn with aij = 1 if |i − j| = 1 and aij = 0 otherwise; see Figures 2a and 2c, which
suggest the connectivity of symmetric tensor powers of path graphs is of interest.

Theorem 6.1. P�kn has dk+1
2 e connected components. (a) If k = 2`, then one of

those components contains
(
n+`−2

`

)
loops. (b) If k is odd, then P�kn contains no loops.

Proof. If i and j share an edge in P�kn , then

m(i)odd =
∑
` odd

m(i)` =
∑
` even

m(j)` = m(j)even,

m(i)even =
∑
` even

m(i)` =
∑
` odd

m(j)` = m(j)odd,

because for every r ∈ [n] m(i)r is splitted and added to m(j)r+1 and m(j)r−1 if
possible.

Consider vertices ia,b with a+ b = k and a > b such that m(ia,b) = (a, b, 0, . . . , 0).
All of them lie in different connected components, otherwise if ia1,b1 and ia2,b2 with
a1 > a2 are in the same component, then a1 = a2 or a1 = b2, which is a contradiction.

Furthermore, every vertex i = (v1, v2, · · · , vk) is in the same connected component
with a vertex of the form ia,b. To see this, consider moving from m(i) = (v1, v2, · · · , vn)
to m(i′) = (v2, v1 + v3, v4, . . . , vn, 0) until the only nonzero entries are the first two,
if needed swap the first two coordinates. This implies that the number of connected
components is the same as the number of different vertices of the form ia,b. There are

dk+1
2 e such vertices, because there are k + 1 ways to choose a, b such that a + b = k

and b 6 a gives the correct count.
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(a) P�3
3 has d 3+1

2
e = 2 connected components and no loops, as predicted by Theorem 6.1.b.
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√
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√
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√
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√
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(b) P�4
3 has d 4+1

2
e = 3 connected components and

(
3+2−2

2

)
= 3 loops, as predicted by

Theorem 6.1.a.

Figure 6. Symmetric tensor powers P�3
3 and P�4

3 of the path graph P3 on three
vertices. Only nonzero edge weights unequal to 1 are included.

There are no loops for k odd. Otherwise a loop in j implies m(j)even = m(j)odd.
This contradicts the parity of k. For k even, write k = 2` and let an,` the number of
loops in P�kn . They satisfy the recursion

an,` = an−1,` + an,`−1,

with initial conditions a1,` = 0 and an,1 = n− 1. The argument is by induction. Note
that if i contains a loop, then either m(i)n = 0 or not: if it is 0 remove it, getting a

vertex in P�kn−1 that contain a loop. If m(i)n 6= 0, notice that m(i)n−1 6= 0 because
otherwise it was not a loop and so consider x′ given by m(x′) = (m(i)1, . . . ,m(i)n−1−
1,m(i)n−1), this is a loop in P�(k−2)

n . This implies the result by the usual recursions
for binomial coefficients. �

Figures 6 and 7 illustrate the previous theorem.

6.3. Cycle graphs. The cycle graph Cn is the graph with adjacency matrix
[aij ] ∈ Mn, in which aij = 1 if |i− j| ∈ {1, n− 1} and aij = 0 otherwise; see Figure 8.

Proposition 6.2. (a) C�kn has dk+1
2 e connected components if n is even. (b) C�kn

is connected if n is odd.
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(b) P�2
6

Figure 7. Path graph on six vertices and its second symmetric tensor power.
Only edge weights unequal to 1 are included.

1

2

3

45

1 1

1

1

1

(a) C5
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(b) C�2
5

Figure 8. The cycle graph C5 and its second symmetric tensor power.

Proof. (a) The case in which n is even can be done in a similar fashion as in the
proof of Proposition 6.1.
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(b) If n is odd and a1 > a2, there is a path from ia1,b1 to ia2,b2 , so C�kn is connected:

m(ia1,b1) = (a1, b1, 0, . . . , 0︸ ︷︷ ︸
odd

)→ (b1, 0, 0, . . . , 0︸ ︷︷ ︸
even

, a1)→ (a2, b1, 0, . . . , 0︸ ︷︷ ︸
odd

, a2 − a1, 0)

→ (0, 0, b1, 0, . . . , 0︸ ︷︷ ︸
odd

, a2 − a1, 0, a2)→ (a2, b1, 0, 0, . . . , 0︸ ︷︷ ︸
even

, a2 − a1, 0, 0, 0)

→ · · · → (0, 0, b1, 0, a2 − a1, 0, . . . , 0, a2)→ (a2, b1, 0, a2 − a1, 0, . . . , 0)

→ (0, 0, b1 + a2 − a1, 0, . . . , a2)→ (a2, b1 + a2 − a1, 0, . . . , 0) = m(ia2,b2). �

6.4. Complete bipartite graphs. The complete bipartite graph Kn,m has ver-
tex set [n+m] and edges connecting every vertex in [n] with every vertex in [n+m]r[n].
A vertex in K�kn,m is formed as follows: choose 0 6 i 6 n and compose i elements from
[n] and k − i elements from [n + m] r [n]. Observe that if i < k − i this connection
is possible by taking i elements from [n + m] r [n] and k − i elements from [n]. For
every 2i < k, this forms a new bipartite graph

K(i+n−1
i )(k−i+m−1

k−i ),(i+m−1
i )(k−i+n−1

k−i ).

For k even, write 2i = k. Then any vertex having i elements from each block
is connected to every other one, including itself. This yields a copy of the graph
J(k/2+n−1

k/2 )(k/2+m−1
k/2 ). This proves the next result.

Theorem 6.2. For k, n,m ∈ N, as unweighted graphs we have

K�kn,m =



b k−1
2 c⋃
i=0

K(i+n−1
i )(k−i+m−1

k−i ),(i+m−1
i )(k−i+n−1

k−i ) if k is odd,

J(k/2+n−1
k/2 )(k/2+m−1

k/2 ) ∪
b k−1

2 c⋃
i=0

K(i+n−1
i )(k−i+m−1

k−i ),(i+m−1
i )(k−i+n−1

k−i ) otherwise.

This graph has 1 + bk−1
2 c+ 1+(−1)k

2 = dk+1
2 e connected components.

We illustrate the previous result as follows. Figure 9 presents the third and fourth
symmetric power of K2,1; the second symmetric power is illustrated in Figure 2. A
complete bipartite graph is a star graph if n = 1; see Figure 10.

7. Wiener index

Let G be an undirected graph with VG = {v1, v2, . . . , vn}. The Wiener index

W (G) =
∑

{vi,vj}⊆VG
vi 6=vj

dG(vi, vj),

where dG(vi, vj) is the minimum distance between vi and vj , measures the complexity
of G. In this section, we compute the Wiener index of the symmetric tensor product
for several types of graphs.

Proposition 7.1. (1) W (J�kn ) =

((k+n−1
k

)
2

)
.
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Figure 9. The graphs K�3
2,1 and K�4

2,1 illustrate Theorem 6.2.
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Figure 10. Star graphs are bipartite graphs. The images above illustrate Theo-
rem 6.2.
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(2) W (K�kn ) =

((k+n−1
k

)
2

)
+
n

2

((
k + 2(n− 2) + 1

2(n− 1)

)
−
(
k −

⌈
k
2

⌉
−
(

1+(−1)k

2

)
+ n− 1

n− 1

))
.

Proof. It is clear that the graph J�kn has every possible edge and so, every vertex
is at distance one of every other vertex, implying that the sum is given by choosing the
two vertices. For the complete graph, every two vertices are at distance no more than
two. Call Dk the number of pairs of vertices, without order, that are not connected
by an edge. This happens only if there is one element appearing more times than the
rest of the elements. In this situation, using the pigeonhole principle, we will have to
assign one of the copies of this vertex to itself, but the complete graph contains no
loops, hence it is impossible to go by an edge. Let {i, j} be one of such pairs, then
there is a r ∈ [n] such that is >

∑
r 6=s jr = k − js, and so the condition becomes

is + js > k. Notice also that this can only happen in one index s, and without loss of
generality, we can say that it happens in the first component of the compositions. An
expression for the Wiener index of the complete graph becomes

W
(
K�kn

)
= 1 ·

(((k+n−1
k

)
2

)
− n ·Dk

)
+ 2 · n ·Dk

=

((k+n−1
k

)
2

)
+ 2 · n ·Dk,

but Tk = 2 ·Dk + Fk, where Tk = |{(i, j) : i1 + j1 > k}| denotes the number of pairs
of compositions of k of size n for which the sum of their first parts exceeds k and
Fk = |{i : 2i1 > k}| corresponds to those pairs for which the two compositions are the

same. Using stars and bars one gets Fk =
(
k−d k2 e−(

1+(−1)k

2 )+n−1
n−1

)
. On the other hand,

Tk =

k∑
s=1

k∑
t=k+1−s

(
k − s+ n− 2

n− 2

)(
k − t+ n− 2

n− 2

)

=

k∑
s=1

s−1∑
t=0

(
k − s+ n− 2

n− 2

)(
t+ n− 2

n− 2

)

=

k∑
s=1

(
k − s+ n− 2

n− 2

)(
s+ n− 2

n− 1

)
=

(
k + 2(n− 2) + 1

2(n− 2)

)
.

The proof is complete. �

Recall that Cn is the cycle graph on N vertices. Corollary 5.2 shows that if n is
odd, then C�2

n is connected. We compute its Wiener index.

Proposition 7.2. Let n > 3 be odd, then C�2
n is connected and

W (C�2
n ) =

(
n+ 2

2

)
W (Cn) +

(
n

(
n

2

)
− 2W (Cn)

)(n+3
2

2

)
− 2n2

(n+3
2

3

)
.

Proof. The set of vertices of C�2
n can be identified with {vi�vj : i 6 j}. Partition

this set into n+1
2 blocks of n vertices such that the graph induced by each of the parts
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is isomorphic to Cn. Consider the partition of the vertices of C�2
n given by

VC�2
n

=

(n−1)/2⋃
`=0

V`,

in which V` = {vi � vj : j = i+ `}. Each block of this partition is connected to other
two (except the blocks vi � vi and vi � vi+1) by the edges vi � vj to vi+1 � vj−1 and
vi−1�vj+1 as seen in Figure 8b. Thus, C�2

n is connected and its Wiener index depends
on which of the n+1

2 blocks we are taking the vertices. If d represents the distance
from one block to the other, then the distance in between the elements of each block
is d. There are n2 choices of vertices and n+1

2 − d choices for the two blocks with
distance d, so

W (C�2
n ) =

n+1
2∑
i=0

(
2W (Cn) + i · n2

)(n+ 1

2
− i
)
− n+ 1

2
W (Cn).

The result follows by expanding the product and using binomial identities. �

8. Open questions

Although one can consider symmetric tensor products of distinct graphs, we have
restricted our attention to symmetric powers to avoid the necessary notational hurdles.
Obviously, the investigation of symmetric tensor products of distinct graphs is wide
open territory that warrants exploration.

Problem 8.1. Develop analogous results and observations for symmetric tensor
products of distinct graphs.

Problem 8.2. Figure 4 suggests that G�k is always contained in G�(k+1) in the
sense of weighted graphs (edge weights can increase as one moves to a higher power).
It looks like one can prepend 1 to each vertex label to pass to the next power. But
this fails in Figure 3, even though nesting occurs. What can be said about nesting in
successive symmetric tensor powers?

Problem 8.3. If k 6 r, is G�k a subgraph of G�r in the sense of weighted graphs.
That is, are the weights in G�k at most the corresponding weights in G�r?

Both problems have a positive answer if one of the vertices has a loop. Just call
that vertex 1 and prepend it to the sequence. If not, as in the example of P3, one can
think of picking an edge and alternating it.

Problem 8.4. In Appendix A, we show how the symmetric tensor power of a
permutation matrix is a permutation matrix. How are the cycle decompositions of a
permutation and its symmetric tensor powers related?

Appendix A. The Symmetric tensor power of a graph is well-defined

We now show that isomorphic graphs, that is, graphs whose adjacency matrices
are permutation similar, have isomorphic symmetric tensor powers.
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Theorem A.1. The symmetric tensor power operation on graphs is well defined;
that is, isomorphic graphs have isomorphic symmetric powers.

Lemma A.1. Let Γσ ∈ Mn represent the permutation σ ∈ Sn, that is,

[Γσ]i,j =

{
1 if j = σ(i),

0 if otherwise,

and let N =
(
n+k−1

k

)
. Then Γ�kσ ∈ MN is the permutation matrix associated to

σ�k ∈ SN , in which σ�k(x) is the only nondecreasing element of [n]k in Orb(σ(x)).

Proof. Proposition 2.2 gives

[
Γ�kσ

]
x,y

=
1√(

k
m(x)

)(
k

m(y)

) ∑
t∈Orb(x)
q∈Orb(y)

k∏
`=1

[Γσ]t`,q` .

If z ∈ Orb(σ(x)) and y 6= z, then [Γσ]t`,q` = 0. This happens exactly |Orb(x)| =(
k

m(x)

)
times. Since

(
k

m(x)

)
=
(

k
m(σ(x))

)
, it follows that [Γ�kσ ]x,σ(x) = 1. Thus, Γ�kσ is

the permutation matrix corresponding to σ�k in the group of permutations of the N
nondecreasing elements of [n]k (we identify this group with SN ). �

Example A.1. Let n = k = 2 and let P = [ 0 1
1 0 ]. Then (2.4) and (2.5) ensure that

P�2 =
[

0 1 0
1 0 0
0 0 1

]
and P�3 =

[
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

]
.

Let h = (1, 1), i = (2, 2) and j = (1, 2) be the three posible indices when n = k = 2.
Consider σ = (21) a permutation on two elements, then σ�2(h) = i, σ�2(i) = h
and σ�2(j) = j. Order the basis elements as (1, 1), (2, 2), (1, 2) in the nondecreasing
elements of [2]2.

Example A.2. Let n = 3, k = 2, and let P =
[

0 1 0
0 0 1
1 0 0

]
. Then (2.6) ensures that

P�2 =

 0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0

 .
By imposing a linear order on the basis of the symmetric tensor product using the
lexicographic, one can check that the list of permutations obtained for n = 3, k = 2
is (123)�2 = (123456), (132)�2 = (132546), (213)�2 = (213465), (231)�2 = (231645),
(312)�2 = (312564), and (321)�2 = (321654). Theorem 3.1 ensures that each permu-
tation is a prefix of its second symmetric power.

Proof of Theorem A.1. Suppose that G and H are isomorphic graphs with
adjacency matrices A and B, respectively. Then there is a permutation σ ∈ Sn and
corresponding permutation matrix Γ ∈ Mn such that B = ΓAΓ>. By Lemma A.1 ,



34 ASTAIZA, BARRIOS, CHIMAL-DZUL, GARCIA, DE LA LUZ, MOLL, PUIG, AND VILLAMIZAR

Γ�k is the permutation matrix such that [Γ�kσ ]i,j = 1 if and only if j ∈ Orb(σ(i)). For
A ∈ MN , we have [ΓAΓ>]i,j = [A]σ(i),σ(j). Lemma 2.2 shows that

[(ΓAΓ>)�k]i,j =
1√(

k
m(i)

)(
k

m(j)

) ∑
t∈Orb(i)
q∈Orb(j)

k∏
`=1

Aσ(t`),σ(q`)

=
1√(

k
m(i)

)(
k

m(j)

) ∑
t∈Orb(σ(i))
q∈Orb(σ(j))

k∏
`=1

At`,q`

=
1√(

k
m(σ(i))

)(
k

m(σ(j))

) ∑
t∈Orb(σ(i))
q∈Orb(σ(j))

k∏
`=1

At`,q`

=
[
A�k

]
σ(i),σ(j)

=
[
Γ�kA�k(ΓT )�k

]
i,j
.

Thus, A�k and B�k are permutation similar and hence G�k and H�k are isomor-
phic graphs. �
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