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Universidad Técnica Federico Santa Maŕıa
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A note on the Hurwitz-Lerch zeta function

Robert Reynolds

Abstract. In this work we derive a functional equation in terms of the Hurwitz-

Lerch zeta function along with definite integrals in terms of the incomplete gamma
and Hurwitz-Lerch zeta functions. The method used in these derivations is con-

tour integration. Special cases in terms of fundamental constants are produced.

1. Introduction

Functional equations involving the Hurwitz-Lerch zeta function, derived using
definite integrals was first studied by Lipschitz [1] in (1857). In his work he used cer-
tain definite integrals previously studied by Euler to analyse and derive series forms
for the Hurwitz-Lerch zeta function. Malmsten [2] in (1867), used definite integrals
involving nested logarithmic functions to derive functional equation involving the log-
gamma and trigonometric functions. Lerch [3] in (1877), studied an infinite series
and subsequently derived a functional equation where the parameter range is over
the complex plane. In 1899 Jonquiére [4] established a functional equation in terms
of the polylogarithm and Hurwitz-zeta functions using contour integration and defi-
nite integrals. Fine [5] in (1951), established a generalized Riemann proof previously
studied by Hurwitz to derive a functional equation for the Riemann zeta function.
Apostol [6] in (1951), derived a functional equation for the Hurwitz-Lerch zeta func-
tion based on the transformation theory of theta-functions. Special case evaluations
of the Hurwitz-Lerch zeta function were also produced for negative integer values of
the third parameter. Oberhettinger [7] in (1956), showed that the application of Pois-
son’s summation formula in its ordinary form to the more general case of Lerch’s zeta
function does not present the difficulties with respect to convergence which arise in
its special cases. Berndt [8] in (1972), produced two simple derivations of the func-

tional equation
∞∑
n=0

e2πinx

(n+a)s where the original proof is due to Lerch. The Wolfram

functions website has a detailed list of Hurwitz-Lerch zeta functional equations see
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140 ROBERT REYNOLDS

[Wolfram,0.06.17.0009.01]. Other resources for Hurwitz-Lerch zeta functional equa-
tions are Erdéyli et al. [9] pp. 27-31, Navas et al. [10], Lagarias et al. [11] pp. 1-48,
and [DLMF,25.14].

In this paper we derive the functional equation given by

(1.1) Φ

(
e−2imπ,−k, 1− t

2π

)
= i(−1)ke−

1
2 i(3kπ+2m(−2π+t))(2π)−1−kΓ(1 + k)

(
−Φ

(
e−it, 1 + k,m

)
+(−1)keitΦ

(
eit, 1 + k, 1−m

))
where the parameters k, t,m are general complex numbers and Re(m) > 0. This
functional equation which has a wider range of evaluation for the parameters relative
to previus results in the latter, will be used to simplify definite integrals which are
expressed in terms of the Hurwitz-Lerch zeta function. The derivation involves two
definite integrals and follows the method used by us in [12]. This method involves
using a form of the generalized Cauchy’s integral formula given by

(1.2)
yk

Γ(k + 1)
=

1

2πi

∫
C

ewy

wk+1
dw.

where C is in general an open contour in the complex plane where the bilinear con-
comitant has the same value at the end points of the contour. We then multiply both
sides by a function of x, then take a definite integral of both sides. This yields a
definite integral in terms of a contour integral. Then we multiply both sides of Equa-
tion (1.2) by another function of y and take the infinite sum of both sides such that
the contour integral of both equations are the same.

2. Contour integrals and definite integral representations

in this section we will derive the contour integral representation for the definite
integrals used to derive equation (1.1).

2.1. The first definite integral.

Theorem 2.1. For all k, t,m ∈ C, where Im(b) > 0, Re(m) < 0.

(2.1)

∫ ∞
0

xm logk(ax)

1− bx
dx

= −(−1)mb−1−meimπ(2iπ)1+kΦ

(
e2imπ,−k,−

i
(
iπ + log(a) + log

(
− 1
b

))
2π

)

Proof. Use equation (7) in [13] with α = −b and n = 1. �

http://functions.wolfram.com/10.06.17.0009.01
https://dlmf.nist.gov/25.14
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3. The second definite integral

The contour integral representation for the addition of equations 6(9) and 6(10)
in [14], is given by;

(3.1)
1

2πi

∫ 1

0

∫
C

aww−1−kx−1+m+w

1− eitx
dwdx =

1

2πi

∫
C

∞∑
n=0

aweintw−1−k

m+ n+ w
dw

Using a generalization of Cauchy’s integral formula 1.2, we form the definite integral

by replacing y by log ax and multiply both sides by xm−1

1−eitx ;

(3.2)

∫ 1

0

x−1+m logk(ax)

(−1 + eitx) k!
dx

=
1

2πi

∫ 1

0

∫
C

w−1−kx−1+m(ax)w

−1 + eitx
dwdx

=
1

2πi

∫
C

∫ 1

0

w−1−kx−1+m(ax)w

−1 + eitx
dwdx

We are able to switch the order of integration over x and w using Fubini’s theorem
for multiple integrals see page 178 in [15], since the integrand is of bounded measure
over the space C× [0, 1].

3.0.1. The Incomplete Gamma Function. The incomplete gamma functions are
given in equation [DLMF,8.4.13], γ(a, z) and Γ(a, z), are defined by

(3.3) γ(a, z) =

∫ z

0

ta−1e−tdt

and

(3.4) Γ(a, z) =

∫ ∞
z

ta−1e−tdt

where Re(a) > 0. The incomplete gamma function has a recurrence relation given by

(3.5) γ(a, z) + Γ(a, z) = Γ(a)

where a 6= 0,−1,−2, ... The incomplete gamma function is continued analytically by

(3.6) γ(a, ze2mπi) = e2πmiaγ(a, z)

and

(3.7) Γ(a, ze2mπi) = e2πmiaΓ(a, z) + (1− e2πmia)Γ(a)

where m ∈ Z, γ∗(a, z) = z−a

Γ(a)γ(a, z) is entire in z and a. When z 6= 0, Γ(a, z) is

an entire function of a and γ(a, z) is meromorphic with simple poles at a = −n for

n = 0, 1, 2, ... with residue (−1)n

n! . These definitions are listed in [DLMF,8.2(i)] and
[DLMF,8.2(ii)]. The incomplete gamma functions are particular cases of the more
general hypergeometric and Meijer G functions see section (5.6) and equation (6.9.2)
in [9]. Some Meijer G representations we will use in this work are given by;

(3.8) Γ(a, z) = Γ(a)−G1,1
1,2

(
z

∣∣∣∣ 1
a, 0

)

https://dlmf.nist.gov/8.4.E13
https://dlmf.nist.gov/8.2.i
https://dlmf.nist.gov/8.2.ii
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and

(3.9) Γ(a, z) = G2,0
1,2

(
z

∣∣∣∣ 1
0, a

)
from equations (2.4) and (2.6a) in [16]. We will also use the derivative notation given
by;

(3.10)
∂Γ(a, z)

∂a
= Γ(a, z) log(z) +G3,0

2,3

(
z

∣∣∣∣ 1, 1
0, 0, a

)
from equations (2.19a) in [16], (9.31.3) in [17] and equations (5.11.1), (6.2.11.1) and
(6.2.11.2) in [18], and (6.36) in [19].

3.0.2. Incomplete gamma function in terms of the contour integral. In this section,
we will once again use Cauchy’s generalized integral formula, equation (1.2), and take
the infinite integral to derive equivalent sum representations for the contour integrals.
We proceed using equation (1.2) and replace y by log(a) + x and multiply both sides
by emx and simplify. Next, multiply both sides by −eint then take the infinite sum
over n ∈ [0,∞) and simplify in terms of the incomplete gamma function to obtain

(3.11) −
∞∑
n=0

a−m−neint(−m− n)−1−kΓ(1 + k,−((m+ n) log(a)))

k!

=
1

2πi

∞∑
n=0

∫
C

aweintw−1−k

m+ n+ w
dw

=
1

2πi

∫
C

∞∑
n=0

aweintw−1−k

m+ n+ w
dw

We are able to switch the order of integration and summation over w using Tonellii’s
theorem for integrals and sums see page 177 in [15], since the summand is of bounded
measure over the space C× [0,∞).

Theorem 3.1. For all k, a,m ∈ C, t ∈ R then,

(3.12)

∫ 1

0

x−1+m logk(ax)

1− eitx
dx

=

∞∑
n=0

a−m−neint(−1)k(m+ n)−1−kΓ(1 + k,−((m+ n) log(a)))

Proof. The right-hand sides of relations (3.2) and (3.11) are identical relative to
equation (3.1), we can equate the left-hand sides. Simplify the gamma function yields
the desired conclusion. �

3.1. Derivation of the Hurwitz-Lerch zeta functional equation. The deriva-
tion of equation (1.1) involves equations (2.1) and (3.12) where a = 1. We first write
equation (2.1) over x ∈ [0, 1] and x ∈ [1,∞). Next we transform the definite integral
over x ∈ [1,∞) to x ∈ [0, 1] where we note the power of the variable m is negative.
Next we substitute these two integrals over x ∈ [0, 1] using equation (3.12) and simplify
to yield the stated result.
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4. Alternate integral form over x ∈ [0, 1]

In this section we will evaluate one of the definite integrals resulting from the
subdivision in section (3.1). This integral is of interest due to its Cauchy principal
evaluations. We will also use equation (1.1) to simplify the right-hand side whenever
necessary.

Theorem 4.1.

(4.1)

∫ 1

0

x−1−m logk
(
a
x

)
1− bx

dx =

∞∑
n=0

(−1)kΓ(1 + k,−((1 +m+ n) log(a)))

bn+1a1+m+n(1 +m+ n)k+1

+ (−1)2mbm(2iπ)k+1Φ

(
e2imπ,−k,− i(iπ + log(a) + log(−b))

2π

)
where Im(b) < 0, Re(m) < 0.

Example 4.1. In this first example, we set k = −1 and replace a by ea+ib and
replace b by c. Next we form a second equation by replacing a by −a and take the
difference of the first and second equations and simplify.

(4.2)

∫ 1

0

x−1−m

(−1 + cx)
(
a2 + b2 + 2ib log(x)− log2(x)

) dx
=

1

2a

( ∞∑
n=0

c−1−ne−((a+ib)(1+m+n))
(
−e2a(1+m+n)E1((a− ib)(1 +m+ n))

+E1(−((a+ ib)(1 +m+ n))))

+(−1)2mcm
(
−Φ

(
e2imπ, 1,

−ia+ b+ π − i log(−c)
2π

)
+Φ

(
e2imπ, 1,

ia+ b+ π − i log(−c)
2π

)))
where Im(c) < 0, Re(m) < 0.

Example 4.2. In this example we set k = 1 and repeat the procedure in the
previous example.

(4.3)

∫ 1

0

x−1−m log
(
a2 + b2 + 2ib log(x)− log2(x)

)
1− cx

dx

=

∞∑
n=0

c−1−n

1 +m+ n

(
2iπ + e−((a+ib)(1+m+n))

(
e2a(1+m+n)Γ(0, (a− ib)(1 +m+ n))

+Γ(0,−((a+ ib)(1 +m+ n))))

−2 log(1 +m+ n) + log((a− ib)(1 +m+ n)) + log(−((a+ ib)(1 +m+ n))))

+
4cme2imππ

−1 + e2imπ

(
−i log(2iπ) + eimπ sin(mπ)

(
Φ′
(
e2imπ, 0,

−ia+ b+ π − i log(−c)
2π

)
+Φ′

(
e2imπ, 0,

ia+ b+ π − i log(−c)
2π

)))
− icmπBc(−m, 0)
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where Im(c) < 0, Re(m) < 0.

Example 4.3. In this example we simply look at the case when a = 1 and simplify
the gamma function.

(4.4)

∫ 1

0

x−1−m logk
(

1
x

)
1− e−itx

dx

= − exp(it)

(
−(−1)meimπ

(
eit
)−1−m

(2iπ)1+kΦ

(
e2imπ,−k,

π − i log
(
−e−it

)
2π

)
−(−1)kΓ(1 + k)Φ

(
eit, 1 + k, 1 +m

))
where Re(m) < 0.

Example 4.4. In this example we look at the n-th derivative with respect to the
parameter b where t = i log(b).

(4.5)∫ 1

0

x−m

(b− x)n+1
dx =

(−1)−n

n!

(
−b−m−nπ(i+ cot(mπ))(−m)(n) +

∂n

∂bn
Φ(b, 1,m)

)
where Re(b) 6 0.

Example 4.5. In this example we use Mathematica by Wolfram to evaluate the
previous definite integral and equate both expressions.

(4.6)
∂n

∂bn
Φ(b, 1,m)

= b−m−n
(
π(i+ cot(mπ))Γ(1−m)

Γ(1−m− n)
+ (−1)nB 1

b
(1−m,−n)Γ(1 + n)

)
where 0 < Re(b) < 1.

Example 4.6. In this example we set m = −1/2, t = π/2 then take the first
partial derivative with respect to k and set k = 0. Then we simplify the first partial
derivative of the Hurwitz-Lerch zeta function using equation (1.1) and simplify.

(4.7)

∫ ∞
1

log(log(x))√
x(i+ x)

dx

= log

(
2−(−1)3/4(π+2i log( 15

7 cot(π8 )))
(

3− 2
√

2
)− 1

2
4
√
−1(γ+iπ)

exp

(
−
(

1
2 −

i
2

) (
γ
(
π + 4i tanh−1

(
4
√
−1
))

+ 2i log
(

15
7

)
log(4π)

)
√

2

)

π−
1
2 (−1)3/4(π+2i log( 15

7 cot(π8 )))

(
3Γ
(
− 3

8

)
7Γ
(
− 7

8

)) 1
2 (−1)3/4π (

5Γ
(
− 5

8

)
Γ
(
− 1

8

) ) 3
2 (−1)3/4π


+

1

2
4
√
−1

(
−ζ ′′

(
0,

1

8

)
+ ζ ′′

(
0,

3

8

)
+ ζ ′′

(
0,

5

8

)
− ζ ′′

(
0,

7

8

))
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Example 4.7. In this example we set a = 1,m = −1/2, t = π then take the first
partial derivative with respect to k then take the limit as k → 0 using l’Hopital’s rule
and simplify in terms of the log-gamma function see [DLMF,25.11.18] and Stieltjes
constant [DLMF,25.2.5].

(4.8)

∫ 1

0

log
(
log
(

1
x

))
√
x(1 + x)

dx

=
1

2

(
π

(
γ + log

(
32π2

81

)
− 4logΓ

(
−3

4

)
+ 4logΓ

(
−1

4

))
+ γ1

(
1

4

)
− γ1

(
3

4

))
5. Special cases of the Hurwitz-Lerch zeta function giving simple

constants

In this section we look at special cases of equation (1.1) in terms of simple con-
stants. Similar work can be found in the work by Guillera and Sondow [20] and
[Wolfram,7-10]

Example 5.1. In this example, set m = 1/2, t = π, then take the first partial
derivative with respect to k then apply l’Hopital’s rule as k → −1 and simplify in terms
of the log-gamma function see [DLMF,25.11.18] and Stieltjes constant [DLMF,25.2.5].

(5.1) γ1

(
1

4

)
− γ1

(
3

4

)
= 2π log

(
3e−

γ
2 Γ
(
− 3

4

)
2
√

2πΓ
(
− 1

4

))
Example 5.2. In this example take the first partial derivative with respect to k

then set m = 1/2, k = 1, t = 0 and simplify using equation [Wolfram,8].

(5.2) Φ′
(

1, 2,
1

2

)
=

1

2
π2 log

(
4 3
√

2eγπ

A12

)
Example 5.3. In this example take the first partial derivative with respect to

k then set m = 1/2, t = 0 and take the limit as k → 2 simplify using equation
[Wolfram,9].

(5.3) Li′−2(−1) = −7ζ(3)

4π2

Example 5.4. In this example we simply set t = 0 and simplify to get the poly-
logarithm is related to the Hurwitz zeta function by Jonquiére’s formula given by
[Wolfram,10.08.27.0004.01].

(5.4) Li−k
(
e−2imπ

)
= i(−1)ke

1
2 (−3)ikπ(2π)−1−kΓ(1 + k)

(
(−1)kζ(1 + k, 1−m)− ζ(1 + k,m)

)
Example 5.5. In this example we take the first partial derivative and set m =

1/2, k = 0, t = π and simplify using equation [DLMF,25.11.18].

(5.5) Φ′
(
−1, 0,

1

2

)
= log

(
8Γ
(

5
4

)2
π

)

https://dlmf.nist.gov/25.11.E18
https://dlmf.nist.gov/25.2.E5
https://mathworld.wolfram.com/LerchTranscendent.html
https://dlmf.nist.gov/25.11.E18
https://dlmf.nist.gov/25.2.E5
https://mathworld.wolfram.com/LerchTranscendent.html
https://mathworld.wolfram.com/LerchTranscendent.html
http://functions.wolfram.com/10.08.27.0004.01
https://dlmf.nist.gov/25.11.vi
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Example 5.6. In this example we set t = 2π, then take the first partial derivative
with respect to k then set k = 1,m = 1/2 and simplify using equation [Wolfram,8].

(5.6) Φ′(−1,−1, 0) = log

(
3
√

2 exp
(

1
4

)
A3

)
Example 5.7. In this example we take the first partial derivative with respect to

k then set k = 1,m = 1/4 and simplify using equation [Wolfram,8].

(5.7) Φ′(−i,−1, 0) = log

(
27/6 exp

(
1
2

)
exp

(
2iC
π

)
A6

)
Example 5.8. In this example we take the first partial derivative with respect to

k then set k = 1,m = 3/4 and simplify using equation [Wolfram,8].

(5.8) Φ′(i,−1, 0) = log

(
27/6 exp

(
2iC
π

)
exp

(
1
2

)
A6

)
Example 5.9. In this example we take the first partial derivative with respect to

k then set k = 2,m = 1/2 and simplify using equation [Wolfram,9]..

(5.9) Φ′(−1,−2, 0) = −7ζ(3)

4π2

Example 5.10. In this example we set t = −2π, then take the limit using
l’Hopital’s rule as k → 1 and m = 1/2 and simplify using equation [Wolfram,8].

(5.10) Φ′(−1,−1, 2) = log

(
exp

(
1
4

)
3
√

2

A3

)
Example 5.11. In this example we set t = 4π, then take the limit using l’Hopital’s

rule as k → 1 and m = 1/2 and simplify using equation [Wolfram,8].

(5.11) Φ′(−1,−1,−1) = −iπ − log

(
3
√

2 4
√
e

A3

)
Example 5.12. In this example we set t = π, k− > k − 1, then take the first

partial derivative with respect to k and take the limit using l’Hopital’s rule as k → 0
and simplify using equations [DLMF,25.11.18], [Wolfram,1]

(5.12)

1

2
π

(
γ + log

(
8π3

Γ
(

1
4

)4
))

=
1

2

(
3γπ + π

(
2iπ + log

(
400π3

3Γ
(

1
4

))+ 2logΓ

(
−5

4

))

+2iγ

(
log

(
−Γ

(
−3

4

))
− logΓ

(
−3

4

))
− (π + 2i log(4π))logΓ

(
−3

4

)
+i

(
12 log2(2)− 2 log(3) log(4π) + 2 log(π) log

(
Γ

(
1

4

))
+ 2 log(4) log

(
πΓ

(
1

4

))
−ζ ′′

(
0,−1

4

)
+ ζ ′′

(
0,

3

4

)))

https://mathworld.wolfram.com/LerchTranscendent.html
https://mathworld.wolfram.com/LerchTranscendent.html
https://mathworld.wolfram.com/LerchTranscendent.html
https://mathworld.wolfram.com/LerchTranscendent.html
https://mathworld.wolfram.com/LerchTranscendent.html
https://mathworld.wolfram.com/LerchTranscendent.html
https://dlmf.nist.gov/25.11.vi
https://mathworld.wolfram.com/Euler-MascheroniConstant.html
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Example 5.13. In this example we set t = 2π(1 − t), k = k − 1,m = 1/4. Then
take the first partial derivative with respect to k and set k = 1 and simplify using
equation (6.11) in [21].

(5.13) − i log

(
Γ
(

2+t
4

)
2Γ
(
1 + t

4

))+ log

(
Γ
(

1+t
4

)
2Γ
(

3+t
4

))

=
e

1
2 (−3)iπ(1+t)

6π

(
6e2iπt

2F1

(
1

4
, 1;

5

4
; e2iπt

)
(−2iγ + π − 2i log(2π)) + 2 2F1

(
3

4
, 1;

7

4
; e−2iπt

)
(
2iγ + π + i log

(
4π2
))
− 3iΦ′

(
e−2iπt, 1,

3

4

)
+ 3ie2iπtΦ′

(
e2iπt, 1,

1

4

))
Example 5.14. In this example we set t = 2π(1− t), k = k− 1,m = −1/4. Then

take the first partial derivative with respect to k and set k = 1 and simplify using
equation (6.7) in [22].

(5.14) log

(
Γ
(
t
4

)
2Γ
(

2+t
4

))+ i log

(
Γ
(

1+t
4

)
2Γ
(

3+t
4

)) =
1

6π

(
e

1
2 (−5)iπt

(
−3iΦ′

(
e−2iπt, 1,

5

4

)
+e2iπt

(
−12π + 2e2iπt

2F1

(
3

4
, 1;

7

4
; e2iπt

)
(−2iγ + π − 2i log(2π))

+6 2F1

(
1

4
, 1;

5

4
; e−2iπt

)
(2iγ + π + 2i log(2π)) + 3iΦ′

(
e2iπt, 1,−1

4

))))
Example 5.15. In this example we look at functional identity where Re(x) < 0.

A similar form is given in [Wolfram,10.06.17.0009.01] where 0 < Re(x) < 1.

(5.15) Φ
(
e2iπx, 1− s, a

)
= −e− 1

2 iπ(−3+s+4a(1+x))(2π)−sΓ(s)
(
eiπsΦ

(
e−2iaπ, s, 1 + x

)
+ e2iaπΦ

(
e2iaπ, s,−x

))
Example 5.16. In this example using equation (5.15), we set x = −1/2 then

take the first partial derivative with respect to s then set s = 1 and simplify using
[DLMF,25.11.18].

(5.16)
log(2)

2
− log(−2 + a) + log(−1 + a)− logΓ

(
−1 +

a

2

)
+ logΓ

(
1

2
(−1 + a)

)
= − 1

2π

(
e−iaπ

(
Φ′
(
e−2iaπ, 1,

1

2

)
+ eiaπ

(
tanh−1

(
eiaπ

)
(2γ + iπ + log(4) + 2 log(π))

+ coth−1
(
eiaπ

)
(−2γ + iπ − 2 log(2π))− eiaπΦ′

(
e2iaπ, 1,

1

2

))))

6. A few evaluations

Example 6.1. Using equation (4.4) where t → i log(b),m → m − 1, we take the
first partial derivative with respect to k and set m = 1/2, k = 1, b = −1 in terms of

http://functions.wolfram.com/10.06.17.0009.01
https://dlmf.nist.gov/25.11.vi
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Catalan’s constant (C) and simplify using equation (1.1) and [Wolfram,10].

(6.1)∫ 1

0

log
(

1
x

)
log
(
log
(

1
x

))
√
x(1 + x)

dx = 4

(
C log(4π) + π

(
−ζ ′′

(
−1,

1

4

)
+ ζ ′

(
−1,

3

4

)))
Example 6.2. Using equation (4.4) where t → i log(b),m → m − 1, we take the

first partial derivative with respect to k and set k = 1, b = 1 and m = −1/2 for the
first equation and m = 1/2 for the second equation and take their difference.

(6.2)

∫ 1

0

log
(

1
x

)
log
(
log
(

1
x

))
√
x

dx = 4 − 4γ + 4iπ + Φ′
(

1, 2,−1

2

)
− Φ′

(
1, 2,

1

2

)
Example 6.3. Using equation (4.4) where t → i log(b),m → m − 1, we take the

first partial derivative with respect to k and set k = 2, b = 1 and m = −1/2 for the
first equation and m = 1/2 for the second equation and take their difference.

(6.3)∫ 1

0

log2
(

1
x

)
log
(
log
(

1
x

))
√
x

dx = 2

(
12− 8γ + 8iπ − Φ′

(
1, 3,−1

2

)
+ Φ′

(
1, 3,

1

2

))
Example 6.4. In this example we using equation (4.4) we form a second equation

by replacing m→ s then take their difference. Next we set m = 1/2, s = −1/2, b = 2
then take the first partial derivative with respect to k and use l’Hopitals’ rule as k → 0
and simplify using [Wolfram,1] and [DLMF,25.11.18]. Note the Cauchy principal value
of the integral, where the is an essential singularity is at x = 1/2. The range of
integration is x ∈ [0,−i] ∪ [−i, 1].

(6.4)

∫ 1

0

(x− 1) log
(
log
(

1
x

))
√
x(−1 + 2x)

dx

=
1

8

(
3
√

2π2 − 2π
(

4i+
√

2 (π + i (log(π)

−2

(
log

(
−2i
√

2π + log(2) +

√
2
(
−2π2 − 2i

√
2π log(2) + log2(2)

))

− log(log(4))− logΓ

(
− i log(2)

4π

)
+ logΓ

(
−1

2
− i log(2)

4π

)))))
+4

(
−γ
(

2 +
√

2 sinh−1(1)
)

+ log(16) + Φ′
(

1

2
, 1,−1

2

)))
Example 6.5. In this example we form two equations using (3.12) with k = −1

and a→ eai and a→ e−ai, take their difference and simplify.

(6.5)

∫ 1

0

xm−1

(bx− 1)
(
a2 + log2(x)

) dx
=

i

2a

∞∑
n=0

bn
(
e−ia(m+n)Γ(0,−ia(m+ n))− eia(m+n)Γ(0, ia(m+ n))

)

https://mathworld.wolfram.com/LerchTranscendent.html
https://mathworld.wolfram.com/Euler-MascheroniConstant.html
https://dlmf.nist.gov/25.11.E18
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Figure 1. Plot of f(x) = Re

(
(x−1) log(log( 1

x ))√
x(2x−1)

)

0.2 0.4 0.6 0.8 1.0
x

-4

-2

2

4

6

f(x)

where Re(b) 6 0.

Example 6.6. In this example we use equation (3.12) and take the k-th partial
derivative with respect to b and simplify.

(6.6)

∫ 1

0

x−1+k+m(
a2 + log2(x)

)
(−1 + bx)k+1

dx

=

∞∑
n=0

i(−1)−kb−k+nΓ(1 + n)
(
e−ia(m+n)Γ(0,−ia(m+ n))− eia(m+n)Γ(0, ia(m+ n))

)
2aΓ(1 + k)Γ(1− k + n)

where Re(b) < 1.

Example 6.7. In this example we use equation (3.12) and replace t→ −i log(b).
Next we take the q-th derivative with respect to b and replace k → s, q → k and
simplify.

(6.7)

∫ 1

0

x−1+k+m logs(ax)

(1− bx)k+1
dx

=

∞∑
n=0

(−1)sa−m−nb−k+n(m+ n)−1−sΓ(1 + n)Γ(1 + s,−((m+ n) log(a)))

Γ(1 + k)Γ(1− k + n)

where Re(m) > 0.

Example 6.8. Generalized forms for Table 327 in [14]. This example is derived
using equation (3.12). First replace t→ −i log b then replace b→ b+ ic. Next form a
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second equation by replacing c → −c and take their difference. We keep |Re(b)| < 1
in order for the series to converge.

(6.8)

∫ 1

0

xm logk(ax)

1− 2bx+ (b2 + c2)x2
dx

=

∞∑
n=0

i(−1)k ((b− ic)n − (b+ ic)n) Γ(1 + k,−((m+ n) log(a)))

2cam+n(m+ n)k+1

where 0 < Re(b) < 1, 0 < Re(c) < 1, 0 < Re(m) < 1.

Example 6.9. This example is derived using equation (6.8) by setting k = −1, a =
eai. Next form a second equation by replacing a→ −a and take the difference.

(6.9)

∫ 1

0

xm

(1− 2bx+ (b2 + c2)x2)
(
a2 + log2(x)

) dx
=

∞∑
n=0

((b− ic)n − (b+ ic)n)
(
Γ(0,−ia(m+ n))− e2ia(m+n)Γ(0, ia(m+ n))

)
4aceia(m+n)

where 0 < Re(b) < 1, 0 < Re(c) < 1, 0 < Re(m) < 1.

Example 6.10. This example is derived using equation (6.8) and applying l’Hopital’s
rule as c→ 0 and simplify.

(6.10)

∫ 1

0

xm logk(ax)

(−1 + bx)2
dx =

∞∑
n=0

(−1)kb−1+nnΓ(1 + k,−((m+ n) log(a)))

am+n(m+ n)k+1

where 0 < Re(b) < 1, 0 < Re(m) < 1.

Example 6.11. This example is derived by using equation (6.10) and taking the
k-th partial derivative. We simplify using the Pochammer symbol in [DLMF,5.2.5].
We also replace n→ j, k → n.

(6.11)

∫ 1

0

xn (xs − xm)

(bx− 1)n+2 log(x)
dx =

∞∑
j=0

b−1+j−n(j − n)n+1 log
(
j+s
j+m

)
(−1)nΓ(n+ 2)

where 0 < Re(b) < 1, 0 < Re(m) < 1, 0 < Re(s) < 1, n ∈ Z+.

Example 6.12. A special case of equation (6.11) with b = 1/2, s = 1/2,m =
−1/2, n = 0.

(6.12)

∫ 1

0

x− 1

(x− 2)2
√
x log(x)

dx =

∞∑
j=0

2−1−jj log

(
1 + 2j

−1 + 2j

)
Example 6.13. In this example we look at the definite integral involving the

nested logarithmic function originally studied by Malmsten [2]. We use equation
(6.10), and set a = 1, then apply l’Hopital’s rule as c → 0. Next we take the j-
th partial derivative with respect to b and simplify using the Pochammer symbol in
[DLMF,5.2.5]. We then take the first partial derivative with respect k and set k = 0.

https://dlmf.nist.gov/5.2.iii
https://dlmf.nist.gov/5.2.iii
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We then make a change of variables n → j, k → s and take the sum over the range
j ∈ [0,∞) since the series is zero at j = 0.

(6.13)

∫ 1

0

xs−1 log(log(x))

(bx− 1)n
dx

=
(−b)1−n

Γ(n)

∞∑
j=1

bjj(γ − iπ + log(1 + j − n+ s))(2 + j − n)n−2

1 + j − n+ s

where |Re(b)| < 1, 0 < Re(m) < 1, 0 < Re(s) < 1, n ∈ Z+.

Example 6.14. In this example we look at the n-th partial derivative of the
Hurwitz-Lerch zeta function expressed as a series. We use equations (3.12) and (6.10)
with a = 1. Using equation (6.10), we simply take the j-th partial derivative with
respect to b and algebraically made the left-hand sides of both equations the same.

(6.14)

∞∑
j=0

jzj−n(1 + j − n)−1+n

(a+ j)s
= Φn(z, s, a)

where |Re(z)| < 1, 0 < Re(a) < 1, 0 < Re(s) < 1, n ∈ Z+.

Example 6.15. In this example we apply simple algebraic techniques to equation
(3.12). We start by replacing b → −b to form a second equation, then take their
difference. Next set k = −1 and replace a → −a to form another equation and take
their difference and replace a → ai, b → bi and simplify. Similar forms are listed in
sections (4.282-4) in [17] and sections (2.6.18) in [23]. This is an extended form of
equations (2.6.18.10-11) in [23].

(6.15)

∫ 1

0

xm−1

(b2 + x2)
(
a2 + log2

(
1
x

)) dx
=

∞∑
n=0

i2n+1 cos
(
nπ
2

) (
eia(m+n)Γ(0, ia(m+ n))− e−ia(m+n)Γ(0,−ia(m+ n))

)
2abn+2

where 0 < Re(m) < 1.

Example 6.16. Extended version of equation (4.327.1) and (4.327.2) in [17]. We
use equation (3.12) and take the first partial derivative with respect to k then set
k = 0. Next we replace a→ −a to form a second equation then add the two equations
and simplify.

(6.16)

∫ 1

0

x−1+m log
(
a2 + log2

(
1
x

))
b2 + x2

dx

=

∞∑
n=0

in (1 + (−1)n)
(
Γ(0,−ia(m+ n)) + e2ia(m+n)Γ(0, ia(m+ n)) + 2eia(m+n) log(a)

)
2(m+ n)bn+2eia(m+n)

where 0 < Re(m) < 1, |Re(b)| > 1.
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Example 6.17. Derivation of entries (2.6.20.1-4) in [23]. We use equation (3.12)
set a = 0,m = 1 and replace b → −eiλ, then take the first partial derivative respect
to k and set k = 0 and simplify.

(6.17)

∫ 1

0

log
(
log
(

1
x

))
eiλ + x

dx = −γ log
(
1 + e−iλ

)
Li′1

(
−e−iλ

)

where λ ∈ C.

Example 6.18. Derivation of generalized equation (2.6.20.7) in [23] in terms of
the Hurwitz-Lerch zeta function. We use equation (3.12) and set a = 0. Then form a
second equation by replacing b → −b and take their difference. Next replace b → bi,
then take the first partial derivative with respect to k and set k = −1/2 and simplify.

(6.18)

∫ 1

0

x−1+m log
(
log
(

1
x

))
(b2 + x2)

√
log
(

1
x

) dx
=

√
π
(
−
((

Φ
(
− i
b ,

1
2 ,m

)
+ Φ

(
i
b ,

1
2 ,m

))
(γ + log(4))

)
+ Φ′

(
− i
b ,

1
2 ,m

)
+ Φ′

(
i
b ,

1
2 ,m

))
2b2

where b,m ∈ C.

Example 6.19. Derivation of equation (2.6.20.4) in [23]. We use equation (3.12)
and set a = 0,m = 1 and simplify in terms of the Polylogarithm function using
[DLMF,25.14.3], then form a second equation replacing b→ c and take their difference.
Next replace b → eiγ , c → e−iγ . Next we simplify the Polylogarithm function using
[DLMF,25.12.13 ]. Next we take the first partial derivative with respect to k and apply

https://dlmf.nist.gov/25.14.E2
https://dlmf.nist.gov/25.12.E13
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l’Hopitals rule as k → 0 and simplify. intermediate steps are included.

(6.19)∫ 1

0

log
(
log
(

1
x

))
1 + x2 − 2x cos(γ)

dx = −1

4
i csc(γ)

(
log(64) log(π) +

(
log
(
−e−iγ

)
− log

(
−64eiγ

))
log(2π)

+i
(
π + i log

(
4π2
))

log
(
−π − i log

(
−e−iγ

))
+

(
−iπ + log

(
1

4π2

))
log
(
−π + i log

(
−e−iγ

))
+
(
−iπ + log

(
4π2
))

log
(
−π − i log

(
−eiγ

))
+ (iπ + 2 log(π)) log

(
−π + i log

(
−eiγ

))
+ log(4) log

(
−8π + 8i log

(
−eiγ

))
+ i
(
(1 + 2i)π + log

(
4iπ2i

))
logΓ

(
−
π + i

(
log(−1) + log

(
e−iγ

))
2π

)

−

(
(2 + i)π + i log

((
1

4

)i
π−2i

))
logΓ

(
−1

2
+
i
(
log(−1) + log

(
e−iγ

))
2π

)

−i
(
(1 + 2i)π + log

(
4iπ2i

))
logΓ

(
−
π + i

(
− log(−1) + log

(
eiγ
))

2π

)

+
(
(2 + i)π + i log

(
4−iπ−2i

))
logΓ

(
−1

2
+
i
(
− log(−1) + log

(
eiγ
))

2π

)

+ζ ′′

(
0,
π − i

(
log(−1) + log

(
e−iγ

))
2π

)
+ ζ ′′

(
0,
π + i

(
log(−1) + log

(
e−iγ

))
2π

)

−ζ ′′
(

0,
π − i

(
− log(−1) + log

(
eiγ
))

2π

)
− ζ ′′

(
0,
π + i

(
− log(−1) + log

(
eiγ
))

2π

))

= −1

2
csc(γ)

(
γ log(2π) + π log

(
− 1

2π
+

1

γ

)
− πlogΓ

(
− γ

2π

)
+ πlogΓ

(
−1 +

γ

2π

))
= −1

2
π csc(γ) log

(
(2π)−1+ γ

π Γ
(
γ
2π

)
Γ
(
1− γ

2π

) )

where γ ∈ C.

Example 6.20. Derivation of a generalized form of equation (2.6.20.5) in [23].
We use equation (3.12) and set a = 0 and simplify in terms of the Hurwitz-Lerch
zeta function. Next we form a second equation by replacing b → −b and take their
difference and simplify. Next we replace x → un+1 and simplify. We then form
another equation by replacing m → s and take the difference and simplify. Next
we set b = 1 and simplify the right-hand side in terms of the Hurwitz zeta function
using equation [DLMF,25.14.2] and equation (64:13:3) in [24]. Next we replace m→
n/(1 + n), s→ (2 + n)/(1 + n) and take the first partial derivative with respect to k.
We then applyl ’Hopital’s rule as k → 0 and simplify interms of the Euler’s constant

https://dlmf.nist.gov/25.14.E2
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γ from [DLMF,5.2.3] and Stieltjes constant γn from [DLMF,25.2.5] and simplify.

(6.20)

∫ 1

0

x−1+z
(
1− x2

)
log
(
log
(

1
x

))
−1 + x2+2z

dx

=
1

4(1 + z)

(
−((1 + z) log(4)) + 2π

(
cot

(
πz

1 + z

)
(γ + log(1 + z))

+ csc

(
π

1 + z

)
(γ + log(2 + 2z))

)
+ 2γ1

(
z

1 + z

)
+ γ1

(
z

2 + 2z

)
− γ1

(
2 + z

2 + 2z

)
−γ1

(
1− 1

2(1 + z)

)
− 2γ1

(
1 +

1

1 + z

)
+ γ1

(
1 +

1

2 + 2z

))
where z ∈ C.

Example 6.21. In this example, we use equation (3.12) and take the q-th deriv-
ative of m and simplify.

(6.21)

∫ 1

0

x−1+m logk
(

1
x

)
logq

(
1
x

)
−b+ x

dx = −
Γ(1 + k)Φ

(
1
b , 1 + k + q,m

)
(1 + k)q

b

where |Re(b)| > 1.

Example 6.22. In this example we use equation (6.21) and take the first partial
derivative with respect to k and set k = 0. Next form a second equation by replacing
b→ −b and take their difference and simplify.

(6.22)

∫ 1

0

x−1+m logq
(

1
x

)
log
(
log
(

1
x

))
b2 − x2

dx

=
Γ(1 + q)

2b2

((
Φ

(
−1

b
, 1 + q,m

)
+ Φ

(
1

b
, 1 + q,m

))
ψ(0)(1 + q)

+Φ′
(
−1

b
, 1 + q,m

)
+ Φ′

(
1

b
, 1 + q,m

))
where |Re(b)| > 1.

Example 6.23. In this example, we use equation (3.12) set a = 1 and take the
p-th derivative of m and the first partial derivative with respect to k and set k = 0
simplify.

(6.23)

∫ 1

0

xm+p−1 log
(
log
(

1
x

))
(bx− 1)p+1

dx =
(−1)−p

Γ(1 + p)

(
γ
∂

∂bp
Φp(b, 1,m)− ∂

∂bp
Φp(b, 1,m)

)
where |Re(b)| > 1.

Example 6.24. In this example, we use equation (3.12) set a = 1, b = −1, k =
2,m = 1/2 and simplify using equation [Wolfram,7].

(6.24)

∫ 1

0

log
(

1
x

)
(1 + x)

√
x
dx = 4C

https://dlmf.nist.gov/5.2.E3
https://dlmf.nist.gov/25.2.E5
https://mathworld.wolfram.com/LerchTranscendent.html
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Example 6.25. In this example, we use equation (3.12) take the first partial
derivative with respect to k set a = 1, b = −1, k = 1,m = 1/2 and simplify using
equation [Wolfram,8].

(6.25)

∫ 1

0

log
(
log
(

1
x

))
√
x(1 + x)

dx =
1

2
π log

(
8π3

Γ
(

1
4

)4
)

Example 6.26. In this example, we use equation (3.12) take the first partial
derivative with respect to k set a = 1, b = −1, k = 1,m = 1 and simplify using
equation [Wolfram,8].

(6.26)

∫ 1

0

log
(
log
(

1
x

))
1 + x

dx = −1

2
log2(2)

Example 6.27. In this example we derive an integral representation for the inverse
tangent integral. We use equation (3.12) and set a = 0, b = −z2, k = s,m = 1/2 and
simplify using equation [Wolfram,6].

(6.27)

∫ 1

0

log−1+s
(

1
x

)
√
x (1 + xz2)

dx = Γ(s)Φ

(
−z2, s,

1

2

)
where s, z ∈ C.

Example 6.28. In this example we derive an integral representation for the Le-
gendre chi function. We use equation (3.12) and set a = 0, b = z2, k = s,m = 1/2 and
simplify using equation (5) in [20].

(6.28)

∫ 1

0

log−1+s
(

1
x

)
√
x (1− xz2)

dx = Γ(s)Φ

(
z2, s,

1

2

)
where s, z ∈ C.

Example 6.29. In this example we use equation (3.12) and replace x→ ta,m→
z/a and simplify.

(6.29)

∫ 1

0

xz−1 logk−1
(

1
x

)
1− bxa

dx = a−kΓ(k)Φ
(
b, k,

z

a

)
where Re(b) < 0.

Example 6.30. In this example we use equation (6.29) and replace z → z + 1,
then form a second equation by replacing z → s and take their difference. Next set
b = −1 and simplify in terms of the Hurwitz zeta using equation (64:13:3) in [24].
Next we take the first partial derivative with respect to k and apply l’Hopital’s rule as
k → 0 and simplify in terms of the log-gamma function, [DLMF,25.11.18] and Euler’s

https://mathworld.wolfram.com/LerchTranscendent.html
https://mathworld.wolfram.com/LerchTranscendent.html
https://mathworld.wolfram.com/InverseTangentIntegral.html
https://dlmf.nist.gov/25.11.E18
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constant [DLMF,5.4.11].

(6.30)∫ 1

0

(xs − xz) log
(
log
(

1
x

))
(1 + xa) log

(
1
x

) dx =
1

2

(
log(4) log

(
Γ

(
1− 2a+ z

2a

))
− 2 log(2a exp(γ))

log

(
2aΓ

(
1+s
2a

)
Γ
(

1+a+z
2a

)
(1− 2a+ z)Γ

(
1+a+s

2a

))+ 2(γ + log(a)) log

(
Γ

(
−1 +

1 + z

2a

))
+ζ ′′

(
0,

1 + s

2a

)
− ζ ′′

(
0,

1 + a+ s

2a

)
− ζ ′′

(
0,

1 + z

2a

)
+ ζ ′′

(
0,

1 + a+ z

2a

))
where 0 < Re(s) < 1, 0 < Re(z) < 1.

Example 6.31. In this example we use equation (6.29) and replace z → z + 1,
then form a second equation by replacing z → s and take their difference. Next set
b = −1 and simplify in terms of the Hurwitz zeta using equation (64:13:3) in [24].
Next apply l’Hopital’s rule as k → 0 and simplify in terms of the log-gamma function
using [DLMF,25.11.18].

(6.31)

∫ 1

0

xm − xs

(1 + x) log
(

1
x

) dx = log

(
Γ
(

1+m
2

)
Γ
(
1 + s

2

)
Γ
(
1 + m

2

)
Γ
(

1+s
2

))
where 0 < Re(m) < 1, 0 < Re(s) < 1

Example 6.32. Derivation of a generalized form for equation (2.6.18.6) in [23] in
terms of the incomplete gamma function. We use equation (6.5) and form a second
equation by replacing b → −b and taking their difference. Next replace x → tu, set
m = 1/2 and simplify.

(6.32)

∫ 1

0

x−1+u
2

(−1 + bxu)
(
a2 + log2(x)

) dx
=

∞∑
n=0

ibne−ia(
1
2 +n)u (Γ (0,−ia ( 1

2 + n
)
u
)
− eia(1+2n)uΓ

(
0, ia

(
1
2 + n

)
u
))

2a

where Re(a) > 0, Re(u) > 0.

Example 6.33. Derivation of equation (2.6.18.6) in [23] in terms of the incomplete
gamma function. We use equation (6.32) and set b = −1.

(6.33)

∫ 1

0

x−1+u
2

(1 + xu)
(
a2 + log2(x)

) dx
=

∞∑
n=0

i(−1)ne−ia(
1
2 +n)u (−Γ

(
0,−ia

(
1
2 + n

)
u
)

+ eia(1+2n)uΓ
(
0, ia

(
1
2 + n

)
u
))

2a

where Re(a) > 0, Re(u) > 0.

https://dlmf.nist.gov/5.4.E11
https://dlmf.nist.gov/25.11.E18
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Example 6.34. Derivation of the digamma function in terms of the infinite sum
involving the incomplete gamma function. Since the left-hand sides of equations (6.32)
and (2.6.18.6) in [23], we can equate the right-hand sides to yield the stated result.

(6.34)
∞∑
n=0

i2n+1

(
eia(

1
2 +n)uΓ

(
0, ia

(
1

2
+ n

)
u

)
− e−ia(

1
2 +n)uΓ

(
0,−ia

(
1

2
+ n

)
u

))
=

1

2

(
−ψ(0)

(
π + au

4π

)
+ ψ(0)

(
1

2

(
1 +

π + au

2π

)))
where Re(a) > 0, Re(u) > 0.

Example 6.35. Derivation of a generalized form of equation (2.6.18.11-14) in
[23]. We use equation (3.12) and set m = m + 1, k = −1, a = ea, next we form a
second equation by replacing a → −a and add these two equations. Next we replace
t → −i log(b), a → ai, and using this equation we replace b → −b and take their
difference and simplify.

(6.35)

∫ 1

0

x1+m log(x)

(1− b2x2)
(
a2 + log2(x)

) dx
=

∞∑
n=0

((−b)n − bn) e−ia(1+m+n)
(
Γ(0,−ia(1 +m+ n)) + e2ia(1+m+n)Γ(0, ia(1 +m+ n))

)
4b

where −1/2 6 Re(b) 6 1/2.

Example 6.36. Derivation Derivation of a generalized form of equation (2.6.18.11-
14) in [23]. In this example we simply set m = −1 in equation (6.35) and simplify.

(6.36)

∫ 1

0

log(x)

(1− b2x2)
(
a2 + log2(x)

) dx
=

∞∑
n=1

1

4
(−1 + (−1)n) b−1+n

(
e−ianΓ(0,−ian) + eianΓ(0, ian)

)
where −1/2 6 Re(b) 6 1/2.

Example 6.37. We use equation (3.12) and set m = m+ 1, k = −1, a = ea, next
we form a second equation by replacing a→ −a and add these two equations.Next we
take the j-th derivative with respect to a and simplify.

(6.37)

∫ 1

0

xm
(
(−a− i log(x))−1−j − (−a+ i log(x))−1−j)

−1 + bx
dx

= −
∞∑
n=0

ibne−ia(1+m+n)

((
− i

a(1 +m+ n)

)j
(−i(1 +m+ n))jE1+j(−ia(1 +m+ n))

+e2ia(1+m+n)

(
i

a(1 +m+ n)

)j
(i(1 +m+ n))jE1+j(ia(1 +m+ n))

)
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where Re(a) > 0,−1/2 6 Re(b) 6 1/2.

Example 6.38. In this example we use equation (3.12) and replace t→ −i log(b), a→
ea, next we set k = −1 and take the p-th derivative with respect to b and the q-th
derivative with respect a and simplify using [Wolfram,01].

(6.38)

∫ 1

0

x−1+m+p

(1− bx)p+1(a+ log(x))q+1
dx

=

∞∑
n=0

(−1)−2p−q+1bn−pe−a(m+n)(−m− n)q(a(m+ n))−qE1+q(−a(m+ n))Γ(1 + n)

Γ(1 + n− p)Γ(1 + p)

where Re(a) > 0,−1/2 6 Re(b) 6 1/2, p, q ∈ Z+.

Example 6.39. In this example we use equation (3.12) and replace t→ −i log(b), a→
ea, next we take the first partial derivative with respect to k and set k = −1. Next
we take the p-th derivative with respect to b and simplify using [Wolfram,01].

(6.39)

∫ 1

0

x−1+m log(a+ log(x))

(a+ log(x))(1− bx)p+1
dx

=

∞∑
n=0

bn−pΓ(1 + n)

(
Γ(0,−a(m+ n− p)) log

(
1
a

)
−G3,0

2,3

(
−a(m+ n− p)

∣∣∣∣ 1, 1
0, 0, 0

))
ea(m+n−p)Γ(1 + n− p)Γ(1 + p)

where Re(a) > 0,−1/2 6 Re(b) 6 1/2, p ∈ Z+.

Example 6.40. In this example we use equation (3.12) and replace t→ −i log(b)
and set a = 0. Next we replace x → xq, b → −b,m → z/q and simplify and take the
j-th derivative with respect to b and simplify the factorial factors.

(6.40)∫ 1

0

(− log(x))−1+rx−1+z

(1 + bxq)
j

dx =

∞∑
n=0

(−b)1−j+nq−r
(

1− j + n+ z
q

)−r
Γ(1 + n)Γ(r)

Γ(j)Γ(2− j + n)

where Re(z) > 0, |Re(b)| < 1, j ∈ Z+.

Example 6.41. Extended form of section (2.6.19) in [23]. In this example we use
equation (3.12) and replace t→ −i log(b) and set a = 0. Next we replace x→ xq, b→
−b,m→ z/q. Next we replace z → z + q and take the indefinite integral with respect
to b.

(6.41)∫ 1

0

xz−1 logk−1(x) log (1 + bxq) dx = (−1)k−1bΓ(k)

∞∑
n=0

(−b)n

(n+ 1)((1 + n)q + z)k

where Re(q) > 0, Re(k) > 0, Re(z) > 0, |Re(b)| < 1.

http://functions.wolfram.com/06.06.20.0013.01
http://functions.wolfram.com/06.06.20.0013.01
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Example 6.42. Derivation of equation (2.6.19.6) in [23]. Use equation (6.41) and
set z = 0, k → k+1 and simplify the sum in terms of the Polylogarithm function using
equation [DLMF,25.12.1].

(6.42)

∫ 1

0

logk
(

1
x

)
log (1 + bxq)

x
dx = −q−1−kΓ(1 + k)Li2+k(−b)

where Re(k) > 0, Re(q) > 0, |Re(b)| < 1.

Example 6.43. Generalized equation (2.6.19.7) in [23]. Use equation (6.41) and
replace q → u. We form two equations by replacing b → 1√

b2(c2−1)+bc
and b →

√
b2(c2−1)+bc

b2 and add these two equations and simplify.

(6.43)

∫ 1

0

x−1+z log−1+k(x) log
(
1 + b2x2u + 2bxu cos(t)

)
dx

= 2Γ(k)(−1)k
∞∑
n=1

(−b)n cos(nt)

n(nu+ z)k

where Re(k) > 0, Re(u) > 0, Re(z) > 0, |Re(b)| < 1.

Example 6.44. Here we use equation (6.43) and replace n → n + 1 and form
a second equation by replacing b → −b and take their difference and simplify the
left-hand side using equation [Wolfram,1].

(6.44)

∫ 1

0

xz−1 tanh−1 (bxu) logk−1

(
1

x

)
dx =

1

2
Γ(k)

∞∑
n=1

(1− (−1)n) bn

n(nu+ z)k

where Re(k) > 0, Re(u) > 0, |Re(b)| < 1.

Example 6.45. Here we use equation (6.44) and set z = 0 and simplify the
right-hand side using equation [DLMF,25.12.1].

(6.45)

∫ 1

0

tanh−1 (bxu) log−1+k
(

1
x

)
x

dx = −1

2
u−kΓ(k)(Li1+k(−b)− Li1+k(b))

where Re(k) > 0, Re(u) > 0, |Re(b)| < 1.

Example 6.46. Here we use equation (6.45) and simplify using equation [DLMF,25.12.13].

(6.46)

∫ 1

0

tanh−1 (axu) log−2+s
(

1
x

)
x

dx

=
i1−s2−2+sπsu1−s csc(πs)

−1 + s

(
ζ

(
1− s, π − i log(−a)

2π

)
− ζ

(
1− s, π − i log(a)

2π

)
+i2s

(
−ζ
(

1− s, π + i log(−a)

2π

)
+ ζ

(
1− s, π + i log(a)

2π

)))
where Re(s) > 1, |Re(u)| < 1, Re(a) > 1.

https://dlmf.nist.gov/25.12.E1
https://mathworld.wolfram.com/InverseTangent.html
https://dlmf.nist.gov/25.12.E1
https://dlmf.nist.gov/25.12.E13
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Example 6.47. Extended form of equation (2.6.18.16) in [23]. In this example we
use equation (3.12) and replace t→ −i log(b) and replace x→ xu, a→ au,m→ s/u.
Next we form a second equation by replacing a → −a and take their difference and
set k = −1, a = ai. Next take the indefinite integral with respect to b and replace
s→ s+ u and simplify.

(6.47)

∫ 1

0

x−1+s log (1− bxu)

a2 + log2(x)
dx

=

∞∑
n=0

ib1+n
(
e−ia(s+u+nu)Γ(0,−ia(s+ u+ nu))− eia(s+u+nu)Γ(0, ia(s+ u+ nu))

)
2a(1 + n)

where Re(a) > 0, Re(u) > 0, Re(s) > 0, |Re(b)| < 1.

7. Extended Prudnikov integral forms

In this section we look at deriving formulae using the definite integral substitution.
This method is very useful in deriving finite series, products and functional equations.
This is a continuation of the work done in the previous section. When we apply
the contour integral method in [12] to equation (2.2.9.1) in [23] we get the following
theorem;

Theorem 7.1. For all Re(w) > 0, Re(k) > 0, Re(w) > 0, Re(m) > 0, |γ| < π,

(7.1)
1

2πi

∫
C

∫ 1

0

aww−k−1xm+w−1

x2 + 2x cos(γ) + 1
dxdw

=
1

2πi

∫
C

∞∑
j=0

(−1)jaww−k−1(cos(γj) + cot(γ) sin(γj))

j +m+ w
dw

7.1. Derivation of the left-hand side contour integral representation.
Using a generalization of Cauchy’s integral formula 1.2, we form the definite integral

by replacing y by log ax and multiply both sides by xm−1

x2+2x cos(γ)+1 to get;

(7.2)

∫ 1

0

xm−1 logk(ax)

k! (x2 + 2x cos(γ) + 1)
dx

=
1

2πi

∫ 1

0

∫
C

w−k−1xm−1(ax)w

x2 + 2x cos(γ) + 1
dwdx

=
1

2πi

∫
C

∫ 1

0

w−k−1xm−1(ax)w

x2 + 2x cos(γ) + 1
dxdw

We are able to switch the order of integration over x and w using Fubini’s theorem
for multiple integrals see page 178 in [15], since the integrand is of bounded measure
over the space C× [0, 1].
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7.2. Derivation of the right-hand side contour integral representation.
In this section, we will once again use Cauchy’s generalized integral formula, equation
(1.2), and take the infinite integral to derive equivalent series representation for the
contour integrals. We proceed using equation (1.2) and replace y by log(a) + x and
multiply both sides by emx and simplify. Next, we take the definite integral over
x ∈]0,∞) and simplify using equation (3.382.4) in [17]. Next we replace m → j +m
and multiply both sides by −(−1)j(cos(γj)+cot(γ) sin(γj)) then take the infinite sum
over j ∈ [0,∞) and simplify in terms of the incomplete gamma function to obtain

(7.3)

−
∞∑
j=0

(−1)ja−j−m(−j −m)−1−kΓ(1 + k,−((j +m) log(a)))(cos(jγ) + cot(γ) sin(jγ))

k!

=
1

2πi

∞∑
j=0

∫
C

(−1)jaww−1−k(cos(jγ) + cot(γ) sin(jγ))

j +m+ w
dw

=
1

2πi

∫
C

∞∑
j=0

(−1)jaww−1−k(cos(jγ) + cot(γ) sin(jγ))

j +m+ w
dw

We are able to switch the order of integration and summation over w using Tonellii’s
theorem for integrals and sums see page 177 in [15], since the summand is of bounded
measure over the space C× [0,∞).

Theorem 7.2. For all Re(m) > 0, |γ| < π then,

(7.4)

∫ 1

0

x−1+m logk(ax)

1 + x2 + 2x cos(γ)
dx

= −
∞∑
j=0

(−1)ja−j−m(−j−m)−1−kΓ(1+k,−((j+m) log(a)))(cos(jγ)+cot(γ) sin(jγ))

Proof. Since the right-hand sides of equations (7.2) and (7.3) are equivalent
relative to equation (7.1), we can equate the left-hand sides and simplify the gamma
function to yield the stated result. �

Example 7.1. In this example we use equation (7.4) and take the indefinite
integral with respect to b and simplify;

(7.5)

∫ 1

0

x−2+m logk(ax) log
(
1 + 2bx+ x2

)
dx

= −
∞∑
j=0

2(−1)jΓ(1 + k,−((j +m) log(a)))
(
b cos

(
j cos−1(b)

)
−
√

1− b2 sin
(
j cos−1(b)

))
aj+m(1 + j)(−1)k+1(j +m)k+1

where Re(a) > 0, 0 < Re(b) < 1, Re(m) > 0.
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Example 7.2. In this example we use equation (7.4) set a = 1 and take the
indefinite integral with respect to b and simplify the gamma function using [Wolfram,1];

(7.6)

∫ 1

0

x−2+m logk
(

1

x

)
log
(
1 + 2bx+ x2

)
dx

= 2Γ(1 + k)

∞∑
j=0

(−1)j
(
b cos

(
j cos−1(b)

)
−
√

1− b2 sin
(
j cos−1(b)

))
(1 + j)(j +m)k+1

where Re(m) > 0, 0 < Re(b) < 1.

Example 7.3. In this example we use equation (7.6) and set k = 0, b = 0,m →
m + 1. Next replace x → xp and simplify. Then replace m → q/p − 1 followed by
p → p/2. The final integral form is equivalent to equation 325(2) in [25] and hence
equating the right-hand sides yields the stated result. The functions used are the
digamma function [DLMF,5.15.1] and hypergeometric function [DLMF,15.2].

(7.7) ψ(0)

(
p+ q

2p

)
− ψ(0)

(
1 +

q

2p

)

= −
2ip
(

2F1

(
1, 1 + 2q

p ; 2(p+q)
p ;−i

)
− 2F1

(
1, 1 + 2q

p ; 2(p+q)
p ; i

))
p+ 2q

where Re(q) > 0, Re(p) > 0.

Example 7.4. In this example we use equation (7.4) and set k → 2k, b = 0. Next
replace x→ xp and simplify. Next replace m→ z/p, p→ p/2 and simplify.

(7.8)

∫ 1

0

x−1+z log2k

(
1

x

)
log (1 + xp) dx

= −
∞∑
j=0

(−1)j22+2kp−1−2k
(

1 + j + 2z
p

)−1−2k

Γ(1 + 2k) sin
(
jπ
2

)
1 + j

where Re(z) > 0.

Example 7.5. In this example we derive a definite integral in terms of Bernoulli
numbers also studied by Gröber see equation 326(3) in [25]. We use equation (7.8)
and set z = 0 and simplify the series in terms of the polylogarithm function using
[DLMF,25.13.2], and the Hurwitz-zeta function in terms of Bernoulli numbers using
[Wolfram,66].

(7.9)

∫ 1

0

log2k
(

1
x

)
log (1 + xp)

x
dx =

(−1)k
(
22k+1 − 1

)
π2+2kB2+2k

2p2k+1(1 + k)(1 + 2k)

where Re(p) > 0.

https://mathworld.wolfram.com/IncompleteGammaFunction.html
https://dlmf.nist.gov/5.15.E5
https://dlmf.nist.gov/15.2
https://dlmf.nist.gov/25.13.E3
https://mathworld.wolfram.com/RiemannZetaFunction.html
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Example 7.6. In this example we use equation (7.5) and set k = 0, a = 1, b →
cos(b),m = 1 and simplify.

(7.10)

∫ 1

0

log
(
1 + x2 + 2x cos(b)

)
dx = (1+cos(b)) log(2(1+cos(b)))+b sin(b)−2

where Re(b) > 0.

Example 7.7. In this example we use equation (7.5) set k = −1, a → ea,m →
m+ 1. Next form a second equation by replacing a→ −a and take their difference.

(7.11)

∫ 1

0

x−1+m log
(
1 + 2bx+ x2

)
a2 + log2(x)

dx

=

∞∑
j=0

i(−1)j

a(1 + j)

(
eia(1+j+m)Γ(0, ia(1 + j +m))− e−ia(1+j+m)Γ(0,−ia(1 + j +m))

)
(
b cos

(
j cos−1(b)

)
−
√

1− b2 sin
(
j cos−1(b)

))
where Re(a) > 0, 0 < Re(b) < 1, Re(m) > 0.

Example 7.8. Derivation of a functional equation involving the incomplete Beta
function. In this example we use equation (2.6.14.18) in [23] and rewrite the infi-
nite integral over [0,1] and simplify. We start with equation (7.5) with a = 1, k =
0. This gives an integral in terms of the incomplete Beta function from equation
[DLMF,8.17.1]. Next using equation (2.6.14.18) in [23], we transform the integral
over [0,∞) → [0, 1] and replace with the previously derived integral and simplify to
yield the stated result.

(7.12) {b2α
(
B 1
b
(1 + α, 0)−Bb(1− α, 0)

)
+Bb(1 + α, 0)−B 1

b
(1− α, 0)

= i
(
−1 + b2α

)
π − 2bα

α
+
(
1 + b2α

)
π cot(πα)

where Re(b) > 0, Re(α) > 0.

Example 7.9. Derivation of equation (2.6.17.15) in [23] for complex numbers.
In this example we use equation (7.4) and set a = 1,m → m + 1 and simplify in
terms of the Hurwitz-Lerch zeta function with γ → b. Next we form three equations
when m = 2,m = 1,m = 0 and add all three equations and simplify. Next simplify
the polylogarithm function using [DLMF,25.13.2]. Next we apply l’Hopital’s rule as
k → −1 and simplify. Next we simplify the first partial derivative of the Huritz-Lerch
zeta function using equation (1.1) and simplify to get the stated result. The functions
used in this example are Euler’s constant γ in [Wolfram,1], Stieltjes constant γn in

https://dlmf.nist.gov/8.17.E1
https://dlmf.nist.gov/25.13.E3
http://functions.wolfram.com/02.06.02.0001.01
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[Wolfram,1] and the digamma function ψ(z) in [Wolfram,1].

(7.13)

∫ 1

0

(−1 + x)2

(1 + x2 + 2x cos(bπ)) log(x)
dx

=
2e

ibπ
2

(−1 + eibπ) (1 + eibπ)
2
π

(
−ieibππ(γ + log(2π)) sin

(
bπ

2

)
+ cos

(
bπ

2

)(
−ieibπγ1

(
1− b

2

)
+ ieibπγ1

(
1 + b

2

)
−
(
2 + eibπ

)
πΦ′

(
−e−ibπ, 0, 2

)
+
(
eibπ + 2e2ibπ

)
πΦ′

(
−eibπ, 0, 2

)))
= γ + log(2π) + cos2

(
bπ

2

)(
ψ(0)

(
1

2
− b

2

)
+ ψ(0)

(
1 + b

2

))
+

cos(bπ) cot
(
bπ
2

) (
−γ1

(
1−b

2

)
+ γ1

(
1+b

2

))
π

where Re(b) > 0.

Example 7.10. In this example we write equation (7.13) in terms of integers and
compare and equate to equation (2.6.17.15) in [23]. Where b→ m/n.

(7.14)

∫ 1

0

(−1 + x)2(
1 + x2 + 2x cos

(
mπ
n

))
log(x)

dx

=

n−1
r∑

k=1

(−1)k sin
(
kmπ
n

)
log

Γ

(
r(n−(−1)rk+1)

2n

)
Γ

(
r(n−(−1)rk+1)

2n

)
Γ( r(k+2)

2n )Γ( rk2n )

Γ( r(k+1)
2n )Γ( r(k+1)

2n )Γ( r(n−(−1)rk)
2n )Γ( r(n−(−1)rk+2)

2n )


sin
(
mπ
n

)
= γ + log(2π) + cos2

(mπ
2n

)(
ψ(0)

(
1

2
− m

2n

)
+ ψ(0)

(
1

2

(
1 +

m

n

)))
+

cos
(
mπ
n

)
cot
(
mπ
2n

) (
−γ1

(
1
2

(
1− m

n

))
+ γ1

(
1
2

(
1 + m

n

)))
π

where m < n.

Example 7.11. In this example we use equation (7.14) and equate the right-hand
sides and simplify to yield the stated result. Note this is a special case of equation
(2.6.17.15) in [23] when r = 1.

(7.15)

n−1∑
k=1

(−1)k log

(
Γ
(
k
2n

)
Γ
(

2+k
2n

)
Γ
(

1+k+n
2n

)2
Γ
(

1+k
2n

)2
Γ
(
k+n
2n

)
Γ
(

2+k+n
2n

)
)

sin

(
kmπ

n

)
= sin

(mπ
n

)(
γ + log(2π) + cos2

(mπ
2n

)(
ψ(0)

(
−m+ n

2n

)
+ ψ(0)

(
m+ n

2n

))
+

cos
(
mπ
n

)
cot
(
mπ
2n

) (
−γ1

(−m+n
2n

)
+ γ1

(
m+n

2n

))
π

)
where |Re(m/n)| < π/4.

http://functions.wolfram.com/10.05.02.0001.01
http://functions.wolfram.com/06.14.02.0001.01
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Example 7.12. A finite product involving the Gamma function in terms of fun-
damental constants. In this example we use equation (7.15) and take the exponential
function of both sides and simplify.

(7.16)

n−1∏
k=1

(
Γ
(
k
2n

)
Γ
(

2+k
2n

)
Γ
(

1+k+n
2n

)2
Γ
(

1+k
2n

)2
Γ
(
k+n
2n

)
Γ
(

2+k+n
2n

)
)(−1)k sin( kmπn )

= exp

(
sin
(mπ
n

)(
γ + log(2π) + cos2

(mπ
2n

)(
ψ(0)

(
−m+ n

2n

)
+ ψ(0)

(
m+ n

2n

))
+

cos
(
mπ
n

)
cot
(
mπ
2n

) (
−γ1

(−m+n
2n

)
+ γ1

(
m+n

2n

))
π

))
where |Re(m/n)| < π/4.

Example 7.13. Extended form of equations (2.6.7.23-24) in [23]. In this example
we use equation (7.6) and replace m→ m+ 1. Next replace m→ s to form a second
equation and take their difference. Next apply l’Hopital’s as k → −1 and simplify.

(7.17)

∫ 1

0

(xm − xs) log
(
1 + 2bx+ x2

)
log(x)

dx

= 2

∞∑
j=0

(−1)j log
(

2+j+m
2+j+s

) (
b cos

(
j cos−1(b)

)
−
√

1− b2 sin
(
j cos−1(b)

))
1 + j

where Re(m) > 0, Re(n) > 0, Re(b) > 0.

Example 7.14. In this example we use equation (7.17) and set b = 0 and replace
x→ xp and simplify.

(7.18)

∫ 1

0

(
xα − xβ

)
log (1 + xp)

log(x)
dx = −

∞∑
j=0

2(−1)j log
(

2+p+jp+2α
2+p+jp+2β

)
sin
(
jπ
2

)
1 + j

where Re(α) > 0, Re(β) > 0, Re(p) > 0.

Example 7.15. In this example we use equation (7.6) replace m → m + 1 and
form a second equation by replacing m → s and taking their difference. Next take
the first partial derivative with respect to k and apply l’Hopital’s rule as k → −1 and
simplify.

(7.19)

∫ 1

0

(xm − xs) log
(
1 + 2bx+ x2

)
log
(
log
(

1
x

))
log
(

1
x

) dx

=

∞∑
j=0

1

1 + j
(−1)j log

(
2 + j + s

2 + j +m

)
(2γ + log(2 + j +m) + log(2 + j + s))(

−b cos
(
j cos−1(b)

)
+
√

1− b2 sin
(
j cos−1(b)

))
where Re(m) > 0, Re(s) > 0, Re(b) > 0.
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Example 7.16. In this example we use equation (7.6) then take the first partial
derivative with respect to b and simplify in terms of the Hurwitz-Lerch zeta function
using [DLMF,25.14.1]. Next form a second equation by replacing m → s and take
their difference. Next apply l’Hopital’s rule as k → −1 and simplify.

(7.20)

∫ 1

0

−xm + xs

(1 + x2 + 2x cos(b)) log
(

1
x

) dx
=

Φ′
(
−e−ib, 0, 1 +m

)
− Φ′

(
−e−ib, 0, 1 + s

)
+ e2ib

(
−Φ′

(
−eib, 0, 1 +m

)
+ Φ′

(
−eib, 0, 1 + s

))
−1 + e2ib

where Re(m) > 0, Re(s) > 0, Re(b) > 0.

Example 7.17. In this example we use equation (7.20) and simplify using equation
(1.1).

(7.21)

∫ 1

0

−xm + xs

(1 + x2 + 2x cos(b)) log
(

1
x

) dx
= − i

4 (−1 + e2ib)π

(
ei(b+bm−mπ)

(
Φ

(
e−2imπ, 1,

−b+ π

2π

)
(2γ − iπ + log(4) + 2 log(π))

−2Φ′
(
e−2imπ, 1,

−b+ π

2π

)
+ e2imπ

(
−Φ

(
e2imπ, 1,

b+ π

2π

)
(2γ + iπ + log(4) + 2 log(π))

+2Φ′
(
e2imπ, 1,

b+ π

2π

)))
+ e2ib

(
−e−i(b+bm+mπ)

(
Φ

(
e−2imπ, 1,

b+ π

2π

)
(2γ − iπ + log(4) + 2 log(π))

−2Φ′
(
e−2imπ, 1,

b+ π

2π

)
+ e2imπ

(
−Φ

(
e2imπ, 1,

−b+ π

2π

)
(2γ + iπ + log(4) + 2 log(π))

+2Φ′
(
e2imπ, 1,

−b+ π

2π

)))
+ e−i(b+(b+π)s)

(
Φ

(
e−2iπs, 1,

b+ π

2π

)
(2γ − iπ + log(4) + 2 log(π))

−2Φ′
(
e−2iπs, 1,

b+ π

2π

)
+ e2iπs

(
−Φ

(
e2iπs, 1,

−b+ π

2π

)
(2γ + iπ + log(4) + 2 log(π))

+2Φ′
(
e2iπs, 1,

−b+ π

2π

))))
− ei(b+bs−πs)

(
Φ

(
e−2iπs, 1,

−b+ π

2π

)
(2γ − iπ + log(4) + 2 log(π))

−2Φ′
(
e−2iπs, 1,

−b+ π

2π

)
+ e2iπs

(
−Φ

(
e2iπs, 1,

b+ π

2π

)
(2γ + iπ + log(4) + 2 log(π))

+2Φ′
(
e2iπs, 1,

b+ π

2π

))))
where Re(m) > 0, Re(s) > 0, Re(b) > 0.

7.3. Special cases. In these examples we evaluated equation (7.21) for m =
1/2, s = −1/2, b = π/2, π/3, π/4, π/6, π/8 respectively.

Example 7.18.

(7.22)

∫ 1

0

1− x
√
x (1 + x2) log

(
1
x

) dx = log
(

cot
(π

8

))

https://dlmf.nist.gov/25.14.i
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Example 7.19.

(7.23)

∫ 1

0

1− x
√
x (1 + x+ x2) log

(
1
x

) dx = log(2)

Example 7.20.

(7.24)

∫ 1

0

1− x
√
x
(
1 + x

(√
2 + x

))
log
(

1
x

) dx
= (1+i)(−1)5/8

(
1 + 4
√
−1
)(

cos
(π

8

)
log

(
cot

(
3π

16

))
+ log

(
tan

( π
16

))
sin
(π

8

))
Example 7.21.

(7.25)

∫ 1

0

1− x
√
x
(
1 + x

(√
3 + x

))
log
(

1
x

) dx
=

1

4

(
1 +
√

3
)(√

3 cosh−1(49) + log
(

577− 408
√

2
))

Example 7.22.

(7.26)

∫ 1

0

1− x
√
x
(
1 + x2 + 2x cos

(
π
8

))
log
(

1
x

) dx
= −2(−1)11/16

1 + 8
√
−1

(
(1 + i) + 8

√
−1 + (−1)3/8 + (−1)5/8 + i

√
2
)

(
cos

(
3π

16

)
log

(
cot

(
5π

32

))
+ cos

( π
16

)
log

(
tan

(
7π

32

))
+ log

(
cot
( π

32

))
sin
( π

16

)
+ log

(
tan

(
3π

32

))
sin

(
3π

16

))
Example 7.23. Generalized form for equations (2.6.4.3-4) in [23]. In this example

we use equation (7.4) when a = 1 in terms of the Hurwitz-Lerch zeta function. We
set γ = π/2 and replace x→ xu,m→ m/u, u→ u/2 and simplify.

(7.27)

∫ 1

0

x−1+m logk(x)

1 + xu
dx

= −2ke−ikπu−1−kΓ(1 + k)

(
Φ

(
−i, 1 + k,

2m

u

)
+ Φ

(
i, 1 + k,

2m

u

))
where Re(m) > 0.

Example 7.24. Generalized form for equation (2.6.4.5) in [23]. In this example
we use equation (7.27). We take the first partial derivative with respect to u and
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replace m→ m− u and simplify.

(7.28)

∫ 1

0

x−1+m log1+k(x)

(1 + xu)
2 dx

= −2ke−ikπu−3−kΓ(2+k)

(
uΦ

(
−i, 1 + k,−2 +

2m

u

)
+ 2(−m+ u)Φ

(
−i, 2 + k,−2 +

2m

u

)
+uΦ

(
i, 1 + k,−2 +

2m

u

)
+ 2(−m+ u)Φ

(
i, 2 + k,−2 +

2m

u

))
where Re(m) > 0.

Example 7.25. Derivation of a functional equation in terms of Bernoulli and
Euler numbers, using equation (2.6.4.12) in [23] and equation (7.27).

(7.29)
4n+1Bn+1

(
3
4

)
cos
(
πn
2

)
n+ 1

= |En|

Proof. We start with equation (7.27) and replace m→ u/2, k → n and simplify
in terms of the polylogarithm function using [DLMF,25.14.3]. Next we simplify in
terms of the Hurwitz-zeta function using equation [DLMF,25.13.2]. We then simplify
the Hurwitz-zeta function in terms of the Bernoulli numbers using equation [Wol-
fram,9] to get

(7.30)

∫ 1

0

x−1+u
2 logn(x)

1 + xu
dx =

21+2ne−
1
2 inππ1+nu−1−nB1+n

(
3
4

)
1 + n

Equation (2.6.4.12) in [23] is given by;

(7.31)

∫ ∞
0

x−1+u
2 logn(x)

1 + xu
dx =

(π
u

)n+1

|En|

Here we simply expand the range of integration over x ∈ [0, 1] + [1,∞) and substitute
equation (7.30) into equation (7.31) and simplify. �

8. Conclusion

In this paper, we have presented a method for deriving a new functional equation
for the Hurwitz-Lerch zeta function. The method includes the use of contour integra-
tion, definite integrals and some simple algebraic manipulations. We will be using this
method to derive other forms of functional equations involving the Hurwitz-Lerch zeta
function. The results presented were numerically verified for both real and imaginary
and complex values of the parameters in the integrals and formulae using Mathematica
by Wolfram.
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