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Cutting the lemniscate of Fagnano into equal parts

Lori Mancusoa,Victor H. Mollb,Judith Nowalski a and Leonardo Solanillac

Abstract. The work of Fagnano on the lemniscate dealing with equal division

of chords is reexamined. The results are expressed in terms of analytic properties
of the corresponding integrals.

1. Introduction

In his classical article on Elliptic Functions, written for the German Encyclopedia
of the Mathematical Sciences, Fricke [5] tells that Jacobi set the date of birth of elliptic
functions (Geburtstag der elliptischen Funktionen) on December 23, 1751. This day
Euler received the Produzioni matematiche of an italian noble, Giulio Carlo, Conte
Fagnano e Marchese de’ Toschi e di Sant’Onofrio. This book contained the Metodo
per misurare la leminicata [4], a cornerstone for the subsequent development of the
addition formulas of elliptic functions. Certainly, this paper builds a bridge between
the early works of the Bernoullis [1], d’Alembert [2], Landen [7], among others, and
those of Euler [3].

The study of the lemniscate by J. Bernoulli began as a continuation of the work
of Cassini on the curve defined by a geometric condition: it is the locus of all points
the product of whose distances from two fixed points is constant. Recall that the
ellipse corresponds to the analog definition, replacing product by sums. The Bernoulli
lemniscate is the locus of points whose product of distances from two foci equals the
square of the interfocal distance. The Bernoulli lemniscate has Cartesian equation

(x2 + y2)2 − 2a2(x2 − y2) = 0,

with polar form r2 = 2a2 cos(2θ).
The lemniscate is an interesting classical curve. C. L. Siegel has chosen the dupli-

cation of the lemniscate as his starting point in [8], for his development of the theory
of elliptic functions. This approach seems indeed to be one of the best ways to start
to understand general elliptic functions. The whole idea traces back to Gauss’ lem-
niscate sine and cosine functions [6], which provide an appealing example leading to a
Pythagorean-like identity and addition formulas (in particular, half-angle and double
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angle formulas), analogous to those of the usual trigonometric functions. This results
lead directly to the modern theory of elliptic functions.

In this paper we present the original ideas of Fagnano to divide the lemniscatic
quadrant into 2, 3 and 5 equal parts. The only tools available to him were the
consequences of the Fundamental Theorem of Calculus. So, he must device clever
substitutions conducive to determine integer multiples of the lemniscate arclength,
conveniently written in polar coordinates. Each substitution results in a polynomial
of even degree and a zero of such a polynomial yields to a lemniscatic chord giving
the solution to a division problem. The intent of this Section 2 is to prove some cal-
culus lemmas concerning the transformation of elliptic integrals. As it was usual in
Fagnano’s times, these lemmas can be explain geometrically in terms of arclengths of
well-known curves. In Section 3, we establish the theorems yielding the way to cut
the lemniscate into 2, 3 and 5 equal parts. At the end, we draw some conclusions on
Fagnano’s method.

2. The computation of lemniscatic arcs and transformations of elliptic
integrals

This section describes the computation of a lemniscatic arc. Consider the special
case with a = 1/

√
2, so the equation reduces to (x2 + y2)2 = x2 − y2 or r2 = cos 2θ.

Lemma 2.1. Let Z ∈ (0, 1). Then the length of the lemniscatic arc form x = 0 to
x = Z is given by

(2.1) L(Z) =

∫ Z

0

du√
1− u4

.

Proof. Introduce a parameter u so that x2 + y2 = u2 and x2− y2 = u4. That is,

x2 =
u2 + u4

2
=
u2(1 + u2)

2
and y2 =

u2(1− u2)

2
.

Then, implicit differentiation yields

dx =
u(1 + 2u2)

x
du and dy =

u(1− 2u2)

y
du.

It follows that

(dx)2 + (dy)2 = 4

(
(1 + 2u2)2(1− u2) + (1− 2u2)2(1 + u2)

1− u4

)
(du)2 =

8

1− u4
(du)2.

�

The next two results present identities among elliptic integrals. The proof are
direct, some details are provided.

Lemma 2.2. Assume Z ∈ [0, 1). Then

(2.2)

∫ Z

0

dz√
1− z4

=

∫ Z

0

√
1 + z2

1− z2
dz +

∫ T

1

t2 dt√
t4 − 1

− ZT

where T =

√
1 + Z2

√
1− Z2

.
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Proof. The change of variables t2 = (1 + z2)/(1− z2) produces

dt =
1

t

2z dz

(1− z2)2
.

This leads to

t2 · dt√
t4 − 1

=

√
1 + z2

1− z2
· 1− z2

√
4z2
· 2z dz

(1− z2)2
=

√
1 + z2

(1− z2)3
dz.

The result now follows from the identity

dz√
1− z4

− tdz + zdt+ tdz =
dz√

(1 + z2)(1− z2)
+ z

1√
1 + z2

2z dz√
(1− z2)3

=

√
1 + z2

(1− z2)3
dz.

�

Lemma 2.3. Assume x and Z are variables connected by the relation

X =

√
1−
√

1− Z4

Z
.

Then ∫ Z

0

dz√
1− z4

=

∫ X

0

√
2 · dx√
1 + x4

(2.3)

=
3
√

2

2

∫ X

0

√
1 + x4 dx−

√
2

2

√
1 +X4.(2.4)

Proof. For z ∈ (0, 1], define the function

x =

√
1−
√

1− z4

z
.

Direct differentiation gives

dx =

1

2
√

1−
√

1−z4
· −1

2
√

1−z4
· (−4z3)z −

√
1−
√

1− z4

z2
· dz

=
z4 − (1−

√
1− z4)(

√
1− z4)

z2
√

1−
√

1− z4
√

1− z4
dz

=
z4 −

√
1− z4 + 1− z4

z2
√

1−
√

1− z4
√

1− z4
dz =

√
1−
√

1− z4

z2
√

1− z4
dz.

Also,

√
1 + x4

√
2

=

√
1 + (1−

√
1−z4)2

z4√
2

=

√
z4 + 1− 2

√
1− z4 + 1− z4

√
2 · z2

=

√
1−
√

1− z4

z2
.
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The quotient of the last two identities yields
√

2 dx√
1 + x4

=
dz√

1− z4
.

The final step in the proof comes from the expression

3

2

√
1 + x4dx− 1

2
d(x
√

1 + x4) =
3

2

√
1 + x4dx− 1

2

√
1 + x4 − x4

√
1 + x4

dx

=
1√

1 + x4
dx.

�

Lemma 2.4. Let variables U,Z be related by

U2 =
1− Z2

1 + Z2

Then

(2.5)

∫ Z

0

dz√
1− z4

=

∫ 1

U

du√
1− u4

.

Proof. We derive implicitly u to obtain

du =
−z(1 + z2)− (1− z2)z

√
1−z2
√

1+z2
(1 + z2)2

dz

= − 2z

1 + z2
× dz√

1− z4
.

Now the connection

1√
1− u4

=
1√

1−
(

1−z2

1+z2

)2
=

1 + z2

√
4z2

=
1 + z2

2z
.

produces

du√
1− u4

= − dz√
1− z4

.

Integration gives the result. �

Lemma 2.5. Let T and Z be related by the expression
√

1− T 4

√
2T

=

√
1−
√

1− Z4

Z
.

Then

(2.6)

∫ Z

0

dz√
1− z4

=

∫ 1

T

2 dt√
1− t4

.
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Proof. We follow the method described by Fagnano. Consider the substitution
in Lemma 2.3

X =

√
1−
√

1− Z4

Z
with

X =

√
1− T 4

√
2T

.

Then, Lemma 2.3 gives

dz√
1− z4

=

√
2 dx√

1 + x4
=

√
2 dx√

1 + (1−t4)2

4t4

=
√

2 dx× 1− t4

1 + t4
.

However, differentiation of the remaining relation yields

dx =
1√
2

− 2t4√
1−t4 −

√
1− t4

1− t4
dt = −

√
2

1 + t4

(1− t4)
√

1− t4
.

This is just but an interesting application of the chain rule. �

An analogous statement is the last relation among elliptic integrals.

Lemma 2.6. Assume U and Z are related by

(2.7)

√
2U√

1− U4
=

√
1−
√

1− Z4

Z
.

Then

(2.8)

∫ Z

0

dz√
1− z4

=

∫ U

0

2 · du√
1− u4

.

Proof. Although the method in the previous proof is applicable, we use a differ-
ent approach. Differentiation of

√
2u√

1− u4
=

√
1−
√

1− z4

z
,

provides

√
2 ·

√
1− u4 + 2u4

√
1−u4

1− u4
du =

1

z2

(
z4

√
1− z4

√
1−
√

1− z4
−
√

1−
√

1− z4

)
dz.

That is

(2.9)
√

2
1 + u4

1− u4

du√
1− u4

=

√
1−
√

1− z4

z2
· dz√

1− z4
,

and also

u4 +

(
2z2

1−
√

1− z4

)
u2 − 1 = 0.

It follows that

u2 =
−z2

1−
√

1− z4
+

√
z4 + 1− 2

√
1− z4 + 1− z4

1−
√

1− z4
=

−z2

1−
√

1− z4
+

√
2√

1−
√

1− z4
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and therefore

(2.10) u2 +
1− u4

2u2
=

1 + u4

2u2
=

√
2√

1−
√

1− z4
.

Finally, substituting 1 + u4 in (2.9) gives

2 du√
1− u4

=
dz√

1− z4
,

and the result follows from here. �

3. Division of the lemniscate into equals parts

This section presents a geometric form of the question of dividing the total length
of a lemniscate into N equal parts. Some restrictions on the number N come from
the methods employed in the reduction of elliptic integrals.

Theorem 3.1. The arc OP of the lemniscate

(3.1) L =
{

(x, y) : x2 + y2 =
√
x2 − y2

}
(see Figure 1) may be computed as

(3.2) OP = AB + CD − Z × T, 0 6 z < 1,

Where AB is an elliptic arc on the ellipse of semiaxes 1,
√

2 (see Figure 2), CD is an
hyperbolic arc on an equilateral hyperbola (see Figure 3) with unit semiaxis, z is the
horizontal coordinate of point B and t is the distance from point D to the origin.

Figure 1. Lemniscatic quadrant z =
√

cos 2θ, 0 6 θ < π/2.

Proof. Write the equation of the lemniscate in polar coordinates x = z cos θ,
y = sin θ to obtain

(3.3) z2 = cos 2θ.

Then, it follows that

(3.4) arc OP =

∫ Z

0

√
1 +

(
z
dθ

dz

)2

dz =

∫ Z

0

√
1 +

z4

1− cos2 2θ
dz =

∫ Z

0

dz√
1− z4

.
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Figure 2. Elliptic quadrant y =
√

2
√

1− z2, 0 6 z 6 1.

Now, one sees that for the ellipse in Figure 2

(3.5) z2 +
y2

2
= 1, 0 6 z 6 1, y > 0,

i. e. y =
√

2
√

1− z2,

(3.6) arc AB =

∫ Z

0

√
1 +

(
dy

dz

)2

dz =

∫ Z

0

√
1 +

2z2

1− z2
dz =

∫ Z

0

√
1 + z2

1− z2
dz.

Finally, with the parametrization x = t cos θ, y = t sin θ, in the equilateral hyperbola
of equation x2 − y2 = 1, shown in Figure 3, we find that t2 = sec 2θ. Therefore,

(3.7) arc CD =

∫ T

1

√
1 +

(
t
dθ

dt

)2

dt =

∫ T

1

√
1 + cot2 2θ · dt =

∫ T

1

dt√
1− t4

.

Now replace the integrals appearing in formula (2.2) of Lemma 2.2 by the correspond-
ing arcs to produce the identity (3.2).

Figure 3. Hyperbolic quadrant t =
√

sec 2θ, 0 6 θ 6 π/2.
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�

Theorem 3.2. The lemniscatic arc OP , shown in Figure 1, can be calculated as

(3.8) OP =
3
√

2

2
× EF −

√
2

2
× FG,

where EF is the arc of the cubic polynomial y = 1
3x

3 shown in Figure 4 and FG is
the straight line segment of the tangent line at F to the point G of the intersection of
this line and the y-axis.

Proof. As before (Figure 1),

(3.9) arc OP =

∫ Z

0

dz√
1− z4

.

Using now the relation y = 1
3x

3, it follows that (see Figure 4)

(3.10) arc EF =

∫ X

0

√
1 +

(
dy

dx

)2

dx =

∫ X

0

√
1 + x4dx.

Now observe that the vertical distance GH in Figure 4 equals to X3 and therefore

(3.11) straight line segment EF = X
√

1 +X4.

Expressing the lengths of the segments as elliptic integrals and using Lemma 2.3 give
the result. �

The last statement provides geometric procedures to cut a lemniscatic arc into
equal parts by only straightedge and compass constructions.

Theorem 3.3. The part of the of the lemniscate on the first quadrant is given by

(3.12) Q =
{

(x, y) : x2 + y2 =
√
x2 − y2, 0 6 x 6 1, y > 0

}
.

Then,

(1) If a ∈ Q us the point for which the chord (straight segment to the origin)

OA =
√√

2− 1, then

(3.13) arc OA = arc AE =
1

2
arc OE.

(2) If B is the point of Q for which the chord OB =
4
√

2
√

3− 3, then

(3.14) arc OB =
2

3
arc OE and arc BE =

1

3
arc OE.

(3) There is a w ∈ [0, 1) with the following property: if C ∈ Q has chord OC = w,
then

(3.15) arc CE =
1

5
arc OE.

This value is a solution of and equation of degree 8.
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Figure 4. Graph of polynomial y = 1
3x

3.

(4) Given a division of the arc = E into n parts of equal length, there is a
geometric procedure (involving only field operations and square roots) which
divides each of these parts into two equal parts, producing a division into
2n equal parts. Therefore, for any positive integer m, the lemniscate can be
divided algebraically into 2 × 2m, 3 × 2m, 5 × 2m equals parts with compass
and straightedge or ruler.

Proof. The proof is divided into a number of steps.

Step 1. Figure 5 shows

arc OA =

∫ Z

0

dz√
1− z4

.

Let Z = U be the fixed point of the the transformation

u =

√
1− z2

1 + z2
,
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Figure 5. Division of the lemniscate into two equal parts with rule
and compass.

appearing in Lemma 2.4. That is, the value Z =
√√

2− 1 produces the identity

arc OA = arc AE =
1

2
arc OE.

Step 2. This part comes from obtaining a fixed point of the transformation in Lemma
2.5, namely

√
1− t4√

2t
=

√
1−
√

1− z4

z
.

This produces

Z = T =
4

√
2
√

3− 3.

In Figure 6 this means that

arc OB = 2× arc BE =
2

3
arc OE.

This proves the second part of the theorem.

Step 3. Now start with Lemma 2.6. Consider the illustration provided in Figure 7.
Assume the chord OI = U is respectively related to the chord OS = Z as in (2.7).
Then

arc OS = 2× arc OI.

Now by Lemma 2.5, there is point L in the lemniscate sucht that

arc OI = 2× arc LE.

Therefore

arc OS = 4× arc LE.
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Figure 6. Division of the lemniscate into three equal parts with
rule and compass.

Now let S and L collapse to a point, say C (see Figure 7). Then,

arc CE =
1

5
× arc OE,

arc OI =
2

5
× arc OE,

arc IC = arc OI =
2

5
× arc OE.

Figure 7. Division of the lemniscate into five equal parts with rule
and compass.

Lemma 2.4 is now used to produce points B and F such that

arc OI = arc FE,

arc OB = arc CE.
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This proves that the points B, I, F and C cut the quadrant Q into five equal arcs. To
complete the proof, it remains to find value Z = chord OC. This value comes from
the relation

Z =
2U
√

1− U4

1 + U4

arising from formula (2.10) in the proof of Lemma 2.6. Similarly, one also needs the
relation

U =
2V
√

1− V 4

1 + V 4

coming from Lemma 2.5. Furthermore, as S and L collapse to C, it follows that
V = Z. This produces fixed point equation

Z = (f ◦ f)(Z), with f(Z) =
2Z
√

1− Z4

1 + Z4
.

It is not hard to see this last equation has a non-trivial root in [0, 1] and this
root can be expressed with basic operations and square roots. The solution set of this
equation comprises the solutions of f(Z) = Z, which split the lemniscate into three
equal parts. Besides, it gives new solutions leading the cutting of the lemniscate into
five parts. In particular, the sought solution to our problem is

Z =
4

√
−13 + 6

√
5 + 2

√
85− 38

√
5 ≈ 0.93351782.

This value, together with the previous values of Z accomplishing the split of the
lemniscate into 2 and 3 parts, can be checked numerically without difficulty.

Step 4. The final part of the Theorem follows from the next statement.

Lemma 3.1. Suppose the lemniscate is divided into n arcs of equal length. Then
each of these arcs can be divided, by an algebraic procedure, into two equal parts leading
to a division into 2n equal parts.

Proof. Let the arcs be OX1, OX2, . . . , OXn−1 and OE. Divide the odd arcs
OX2j−1 into halves using Lemma 2.6 and then use the chords of these halves and
Lemma 2.4 to cut the remaining arcs. �

�

4. Conclusions

The last part of this work contains some historical comments.

• For Fagnano, definite integrals are not only simple real quantities but actual
arc lengths of certain curves. Also, he does not use integral limits. He writes,
for instance, ∫

dx
√

1 + x4
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and explains that esprime l’arco AQ della parabola cubica primaria corrispon-
dente all’abscissa AF = z..., it represents the arc length of the cubic parabola
y = x3/3 corresponding to the abscissa AF = z.

• First, Fagnano seeks clever transformations to express the arc length of the
lemniscate in terms of arc lengths of other known curves. Then he finds
transformations to cut an arc of the lemniscate into equal parts. In any case,
these transformations only involve field operations and square roots; that is,
straightedge and compass constructions.

• Fagnano’s transformations are indeed solutions to first-order separable ordi-
nary differential equations. In order to cut the lemniscate into three equal
parts, for example, he finds the solution

√
1− t4√

2t
=

√
1−
√

1− z4

z

of the ordinary equation

dz√
1− z4

= − 2dt√
1− t4

,

furnished with the correct initial condition. In general, these differential
equations express positive integer ratios between two arc length differentials
of the lemniscate. Later on Euler noticed these facts and used them to foresee
the addition properties and the periodicity of elliptic functions.

• Gauss formulated a sufficient condition for the constructibility (rule and com-
pass) of regular polygons, which is equivalent to the division of circle into
equal arcs. In his Disquisitiones Arithmeticae he announced that this holds
for a wider class of transcendentals. After a while Abel proved that the
lemniscate can be split into n parts if and only if n is of the form Gauss
discovered.

• Neither Legendre’s canonical forms for elliptic transcendentals nor Jacobi’s
theory of elliptic transformations were available to Fagnano. He was able to
see the tip of the iceberg of all these developments.

Fagnano’s previous results address two types of problems:

• To express the lemniscate arclength in terms of the arclength of other curves
such as ellipses, hyperbolas, parabolas and straight lines.

• To construct substitutions t = t(z) of the lemniscate arclength element

dz√
1− z4

yielding a new arc element

n× dt√
1− t4

,

for certain (negative or positive) integer n.

The first of these problems is related to the fact that elliptic integrals do not
possess an elementary antiderivative, that its, a function constructed from a finite
number of algebraic, exponential, trigonometric and logarithmic functions, by using
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field operations. When this happens, it might be useful to express a given elliptic
integral in terms of other (elliptic, however more familiar) integrals.

The second problem deals with the division of the lemniscate quadrant into an
integer number of equal parts. Fagnano was able to prove that the lemniscate can be
cut into 2, 3 and 5 parts by means of a ruler-and-compass construction. These means
that each division can be expressed by finite field operations of algebraic expressions
and square roots.
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