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A Note on the Riemann ξ−Function.

M.L. Glasser

Abstract. This note investigates a number of integrals of and integral equations

satisfied by Riemann’s ξ−function and its integer powers. A somewhat less re-

strictive derivation of one of Riemann’s identities is provided. The work centers
on the critical strip and it is argued that the line s = 3/2 + it , e.g., contains a

kind of holographic image of the critical region.

1. Introduction

The notation used throughout this note is:

ξ(s) = (s− 1)π−s/2Γ(1 + s/2)ζ(s) (i)

ρ = σ + iτ, 0 < σ < 1 (ii)

Ξ(τ) = ξ(1/2 + iτ) (iii)

Ez(a) =

∫ ∞
1

dt

tz
e−at, (iv)

ψ(x) =

∞∑
n=1

e−πn
2x =

1

2
[θ3(0, e−πx)− 1], x > 0 (v)

J(ρ) =

∫ 1

0

dt[tρ−2 + t(1−ρ)−2]ψ(1/t2) (vi).

γ denotes the contour consisting of the two parallel lines [c − i∞, c + i∞], [1 − c +
i∞, 1− c− i∞], where, unless indicated otherwise, 1 < c < 2, which span the critical
strip 0 < σ < 1, ρn = 1/2 + iτn is the n-th zero of ζ(s) on the critical line in the upper
half plane.

The function ξ(s), s ∈ C, introduced by Riemann[1], satisfies the simple functional
equation ξ(1−s) = ξ(s), is analytic, decays exponentially as |s| → ∞ and possesses the
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16 M.L. GLASSER

same zeros in the critical strip as ζ(s). By Cauchy’s theorem, one has, for 0 < Re[s] < 1
and any positive integer k

ξk(s) =

∫
γ

dt

2πi

ξk(t)

t− s
, (1)

which, in view of the functional equation, can be written

ξk(s) =

∫ c+i∞

c−i∞

dt

2πi
ξk(t)

(
1

t− s
+

1

t− 1 + s

)
(2)

and expresses the values of ξk inside the critical strip entirely in terms of its values
in a region where ζ(s) is completely known from its defining series, say. Here, we
concentrate on the case k = 1. In the following section the representation (2) will
be exploited to obtain several known and some, perhaps, unfamiliar identities. In
particular, a number of new integrals containing Riemann’s function are evaluated,
which should prove useful in further investigations.

Calculation

We begin by recalling the tabulated inverse Mellin transform[2]∫ c+i∞

c−i∞

dt

2πi
x−tΓ(t)ζ(2t) =

∞∑
n=1

e−n
2x (3)

from which, by differentiation, one finds the useful inverse Mellin transform

F (x) =

∫ c+i∞

c−i∞

dt

2πi
x−tξ(t) = 4π2x4

∞∑
n=1

n4e−πn
2x2

− 6πx2
∞∑
n=1

n2e−π.n
2x2

, (4)

Eq.(4) has been presented, in different form, by Patkowski[3] for example.
Parenthetically, we note that if f is integrable and odd, then f(1− 2t)ξ(t) is odd

under t→ (1− t) so that∫ c+i∞

c−i∞

dt

2πi
f(1− 2t)ξ(t) =

∫
γ

dt

2πi
f(1− 2t)ξ(t) = 0. (5)

Thus, by making use of Romik’s formulas[4] for the values of the Theta function
θ3(0, q) and its derivatives we have, from (4)∫ c+i∞

c−i∞

dt

2πi

ξ(t)

t
=

1

2
− Γ(5/4)√

2π3/4
(6).

and from (5) ∫ c+i∞

c−i∞

dt

2πi
ξ(t)

[
(1− 2t)

4τ2
n + (1− 2t)2

]
= 0 (7)∫ c+i∞

c−i∞

dt

2πi
ξ(t)(2t− 1)2n+1 = 0, n = 0, 1, 2, · · · .. (8a)∫ c+i∞

c−i∞

dt

2πi
tξ(t) =

1

2

∫ c+i∞

c−i∞

dt

2πi
ξ(t) = (8b)
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π2
∞∑

n=−∞
n4e−πn

2

− 3π

2

∞∑
n=−∞

n2e−πn
2

(8c)

=
Γ(5/4)

128
√

2π19/4
[Γ8(1/4)− 96π4]. (8d)∫ c+i∞

c−i∞

dt

2πi

ξ(t)

t(1− t)
=

1

2

(
1− π1/4

Γ(3/4)

)
=

∫ 1−c+i∞

1−c−i∞

dt

2πi

ξ(t)

t(1− t)
(9)

None of these appears to have been recorded previously.
Next, by rewriting (2), we have

Theorem 1

Within the critical strip Riemann’s function ξ(ρ) obeys the integral equation

ξ(ρ) = 1− π1/4

2Γ(3/4)
−
∫ c+i∞

c−i∞

dt

2πi

ξ(t)

t

[
2ρ(1− ρ)− t

ρ(1− ρ)− t(1− t)

]
, 1 < c < 2. (10)

or

ξ(ρ) =
1

2
+

∫ c+i∞

c−i∞

dt

2πi

ξ(t)

t

[
1

1− t
− 2ρ(1− ρ)− t
ρ(1− ρ)− t(1− t)

]
. (11)

From this, one finds

Corollary 1

ξ(ρ) = 2π2
∞∑
n=1

∫ ∞
1

dt
(
tρ/2 + t(1−ρ)/2

)(
n4t− 3

2π
n2

)
e−n

2πt. (12)

=
π1/4

2Γ(3/4)
− π

∞∑
n=1

n2
[
ρE(1−ρ)/2(πn2) + (1− ρ)E−ρ/2(πn2)

]
, (13)

Eq. (10) is equivalent to the very important Eq(3.10) in Milgram’s paper[5] and
(13), apart from having summed a series, is LeClair’s key formula (15) in [6]

To explore further consequences of (2), note that the Mellin transform

φ(x) =

∫ c+i∞

c−i∞

dt

2πi
x−t

ξ(t)

t− s
(14)

satisfies the linear differential equation

φ′(x) +
s

x
φ(x) = − 1

x
F (x), φ(∞) = 0 (15)

where F is defined in (4), so after a bit of easy analysis
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φ(x) = 2π2
∞∑
n=1

E x
2 +1(πn2)− 3π

∞∑
n=1

E x
2
(πn2). (16)

By applying (16) to (2) one has (note that τ here is not restricted to be real)

Theorem 2

In the critical strip, Riemann’s function Ξ(τ) satisfies the integral equation

Ξk(τ) =
1

πi

∫ ∞+ic

−∞+ic

tΞk(t)

t2 − τ2
dt, −3/2 < c < −1/2. (17)

k = 1, 2, 3, · · ·

Corollary 2

For τ real and x > 0,

Ξ(τ) = 4π2
∞∑
n=1

∫ ∞
1

dt t1/4 cos(τ ln
√
t)

(
n4t− 3

2π
n2

)
e−n

2πt. (17a)

= 4

∫ ∞
1

dt t1/4 cos[
1

2
τ ln t][tψ′′(t) +

3

2
ψ′(t)] (17b)

=
1

2
− (τ2 + 1/4)

∞∑
n=1

ReE 3
4 +i τ2

(πn2) (17c)

So

Ξ(τ) = 1/2− (τ2 + 1/4)

∫ ∞
1

dt

t3/4
cos(

τ

2
ln t)ψ(t) (18)

Now, (18), which appears in Riemann’s paper[8], can be rewritten

ξ(ρ) =
1

2
− (α+ iβ)

∫ 1

0

dt[tρ−2 + t(1−ρ)−2]ψ(1/t2). (19)

where α = σ(1− σ) + τ2 and β = (1− 2σ)τ. For σ = 1/2, (18) gives

Corollary 3

ρ is a zero of ζ(s) on the critical line, σ = 1/2, if and only if,

Re

∫ 1

0

tρ−2ψ(1/t2)dt =
1

4|ρ|2
. (20)

From the key result (17), for simplicity we choose c = −1,
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Corollary 4

For ρ in the critical strip

ξk(ρ) =
1

π

∫ ∞
−∞

dt ξk(3/2 + it)
1 + it

(1 + it)2 − (ρ− 1
2 )2

(21)

k = 1, 2, 3, · · ·

Before leaving this section, we note that (17) is the source of a great number of
fascinating integral identities found by multiplying both sides by a suitable function
g(τ) and integrating over τ . In the next section a few of these are presented, omitting
details.

Additional integrals

∫ ∞
0

cos(xt)Ξ(t)dt =
1

2
e−x

∫ ∞
−∞

e−ixtξ(3/2 + it)dt, x > 0 (a1),

so, from [2], for x > 0

d

dσ

∫ ∞
−∞

ξ(σ + it)dt = 0, 1/2 < σ <6
3

2
. (a2)

Similarly,∫ ∞
0

ts−1Ξ(t)dt =
1

2 sin(sπ/2)

∫ ∞
−∞

(1 + it)s−1ξ(3/2 + it)dt, 0 < s < 1. (a3)

while for x = iα (a3) reduces to the Hardy-Littlewood integral[1,(10.2.1)].∫ ∞
0

J0(at)Ξ(t)dt =
1

2

∫ ∞
−∞

ξ(3/2 + it)I0[a(1 + it)]dt, a > 0. (a4)∫ T

0

Ξ(t)dt =
1

π

∫ ∞
−∞

dt ξ(3/2 + it) tan−1

(
T

1 + it

)
. (a5)

For p > 0,∫ ∞
0

Ξ(t)

p+ t
dt =

1

π

∫ ∞
−∞

dtξ(3/2 + it)
1 + it

(1 + it)2 + p2

[
pπ

2(1 + it)
− log[

p

1 + it
]

]
. (a6)∫ ∞

0

Ξ(t)

p2 + t2
dt =

1

2p

∫ ∞
−∞

dt
ξ(3/2 + it)

1 + p+ it
. (a7)

∫ ∞
−∞

ξ(z + it)dt =

√√
π

32
Γ(1/4)

[
Γ8(1/4)

32π4
− 3

]
=

∫ ∞
−∞

Ξ(t)dt (a8)

What these examples have in common is that all information on the critical line
is equivalent to information on the line σ = 3/2.

Discussion
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The thrust of the preceding sections, and the key formulas have all been confirmed
numerically with Mathematica, is that all the features of ξ in the critical strip are
encoded on the lines σ = c, 1 < c < 2 in a “holographic ”manner made explicit by
(21). This has the form

ξ(ρ) =

∫
ξ(3/2 + it)R(σ, τ ; t)dt (22)

where R is a rational function. As functions go, ξ(3/2 + it) is uncomplicated: it has
no zeros or poles, it is infinitely differentiable and it decays exponentially. Its real
and imaginary parts are even and odd, respectively, and related to each other by the
Cauchy-Riemann equations. Both of the latter functions are, except near t = 0, almost
featureless. Furthermore, the zeta function component is nearly equal to unity over
most of the integration range. Thus any interesting feature in the critical strip must
be ascribed largely to features of R which ought be easily analyzed.

Equation (20) (in essence due to Riemann) has been confirmed for the first 1000
critical zeros, which are available on Mathematica, in its exact form, but even if ψ(x)
is truncated to one exponential it is satisfied to many decimal place accuracy for
large magnitude zeros. In this case, the integral is E3/4+iτn/2(π) and by asymptotic
expansion should be capable of producing a formula for τn similar to LeClair’s[6] and
Milgram’s[7], but with less complexity. That is, to derive an expression for ρn, one
expresses (20) in the form

Re

[
e−(ρ+1/2) ln

√
πΓ

[
1

2
(ρ+

1

2
)

]
+ g(ρ)

]
= 0 (23a)

g(ρ) =
ρ+ 1/2

|ρ+ 1/2|2 1F1(ρ+ 1/2; ρ+ 3/2;−π)− 1

4|ρ|2
(23b)

Now, along the critical line the real part of the function g(ρ) in (23b) is non-oscillatory,
monotonically decreasing and smaller than the accuracy we are trying to achieve,
although much larger than the first term in (23a).which is oscillatory. However, in the
spirit of [6 ] one ignores g and thus approximates (23a) as

Re

[
e−iτ ln(

√
π)Γ

(
1

2
+ i

τ

2

)]
= 0 (23c)

Following [6] one now applies Stirling’s formula in (22) and solves for τn to obtain an
analogue of LeClair’s formula[6. (20)].

This note concludes with speculations on the Riemann hypothesis(RH) which
claims that ξ(ρ) does not vanish for 0 < σ < 1/2. However, as remarked above, this is
a question of the simultaneous vanishing of the real and imaginary parts of the integral
(22) for which the zeta function itself seems to play a small role. For σ = 1/2, the
imaginary part goes away and it is known that the real part has countably many roots
τn. Otherwise, the situation appears to depend mainly on the nature of the rational
function R, which depends on σ, more than on ξ, which does not.

Since the critical strip is known to be free of non-critical zeros to astronomical
values of |ρ|, the resolution of this matter might be settled by extracting a low order
asymptotic estimate of the Mellin transform J(ρ) and analyzing the resulting algebraic
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equation. Since truncating ψ to a single term appears to yield accurate results for large
n, it may be reasonable to conjecture:

The Riemann hypothesis is true if for large t the equation

(1− s)s+ t2

((1− s)s+ t2)
2 − (1− 2s)2t2

−<
(
E− s2−

it
2 +1(π) + E 1

2 (s+it+1)(π)
)

= 0 (26)

has no real solution t for 0 < s < 1/2. However, such simple expedients tend to be
illusory since no matter how small it is, a positive number is not zero, as exemplified
by Lehmer’s phenomenon[7].

One can, I believe, do better. From (21), n by noting that

f(ρ, t) =
1 + it

(1 + it)2 − (ρ− 1/2)2
=

∫ ∞
0

du e−(1+it)u cosh[(ρ− 1/2)u], (27)

one sees that for ρ = σ + iτ in the critical strip

ξ(ρ) =
1

π

∫ ∞
−∞

dt ξ(3/2 + it)f(ρ, t)

=
1

π

∫ ∞
0

du e−u cosh[(ρ− 1/2)u]

∫ ∞
−∞

dt e−iutξ(3/2 + it), u > 0. (28)

but, ∫ ∞
−∞

dt e−iutξ(3/2 + it) = 8πe−3u/2[e−2uψ′′(e−2u) +
3

2
ψ′(e−2u)]. (29)

Therefore

ξ(ρ) = 8

∫ ∞
0

du e−5u/2[e−2uψ′′(e−2u) +
3

2
ψ′(e−2u)] cosh[(ρ− 1/2)u]. (30a)

and

Ξ(τ) = 8

∫ ∞
0

du e−5u/2[e−2uψ′′(e−2u) +
3

2
ψ′(e−2u)] cos(τu). (30b)
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The above shows that

Theorem 3.

ρ = σ + iτ can be a zero of ζ(ρ) in the critical region only if∫ ∞
0

duQ(u) cosh[(σ − 1/2)u] cos(τu) (31a)

and ∫ ∞
0

duQ(u) sinh[(σ − 1/2)u] sin(τu) (31b)

are simultaneously zero, where

Q(u) = e−5u/2

[
e−2uψ′′(e−2u) +

3

2
ψ′(e−2u)

]
. (32)

A glance at the graph of Q(u) shows that it is essentially zero for u > 1 where its
value drops from about 2 at u = 0 to 5.51 × 10−7 so this range is of major concern.
Furthermore, for 1/2 < σ < 1 the magnitude of the oscillation of the integrand is
larger for (3a1) than for (31b) hence the vanishing of (31a) and (31b) together for any
value of τ is highly unlikely. For σ = 1/2, however, (31b) is eliminated and the critical
zeros are the solutions to ∫ ∞

0

Q(u) cos(τu)du = 0.

Of course, Titchmarsh could have noted this by Fourier inversion of his integral, but
did not. Therefore, in a sense (30) is merely a generalization of his oft-cited formula
[2].

0.2 0.4 0.6 0.8 1.0
u

0.5

1.0

1.5

Q

Figure 1. Plot of Q(u)
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