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A note on the Laplace transform of |sin(x)/x

M.L. Glasser

ABSTRACT. This note concerns the derivation of several sum and integral identi-
ties relating to the Laplace transform
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and related integrals.

1. Introduction

The function sinc(z) = sin(x)/x occurs frequently in applications such as approxi-
mation theory and computer graphics , and, lately, interest in its purely mathematical
character has been increasing [1, 2]. This note is devoted to a brief examination of
the Laplace transform,

(1.1) J(a,p) :/ e |sinc(z)|” dw :/ e
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for Rep > 0, for which only the cases p = 0,2 appear to be known [4].

First we decompose the range of integration into the intervals [nm, (n + 1)7]
n = 0,1,... and in the n-th interval let *+ — x + nwm. Next we “exponentiate” the
denominator by means of the integral representation for the Gamma function to get
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The next step is to sum the geometric series and introduce s + a = u. Then scaling a
out of the u—integral gives us

(1.3) J(a,p) = ap) /100 du (u= )7 /077 dx e” " ginP ()
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However,
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yielding the desired representation
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As an application of (1.5) we shall derive a closed form expression for p = 2n,
n € Z* for which only the case n = 1 appears in standard tables, such as [4]. By
iterating the functional equation for the Gamma function and noting that |T'(1+ix)|? =

7/ sinh(7x), we find
o] . 2n
/ p—az (Sm(x)) i
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(1.8) - n(i)zn_l/l u T, (k2 + a?u2/4)

The natural next step is to apply the partial fraction decomposition

(1.7) B (a)
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(1.10) mw=gﬁ_w

and the prime denotes j # k. Here one encounters a problem, however, since the
individual integrals do not converge at infinity for n > 1. Therefore we introduce a
finite upper limit and write

a\<n— n g+1 u (u— a1
(1.11)  Bu(a)=n (5)2 39£H302Ak(”)/1 iu(2+(12)k/a)2
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The u—integral is elementary
g+1 —1)2n—14
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1 w?+b  wu
2n71 l
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Since the left hand side of (1.11) is finite, all terms on the right hand side
of (1.11) containing positive powers of g must cancel out; this gives the identities
Sho k*PAg(n) =0, p=0,1,...,n— 1. With the divergent terms eliminated (1.12)

becomes

(1.13) Bn(a):g(g>2n ' A’;g”) [s1(a) In(1 + 4k /a2) + 2s5(a) tan~"(2k/a)]
k=1
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In particular, for n = 2, (1.13) gives

(1.15)  Ba(a) = [16(3a —4)tan"*(2/a) — 8(3a® — 16) tan~'(4/a)—

4a(a® —12)In(1 +4/a?) + a(a® — 48) In(1 + 16/a?)].
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For a — 0, only the last term in ss(a) contributes to (1.12) yielding

*° sin z\*" e 2=l
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Thus we have the interesting identity [2]

(1.17) Zn:kZ"—3Ak(n) "+1 i ( ) — k)L,

k=1 k=0
For odd p, in a similar way one finds

o0 u — 1)2" coth(nau

which appears to be intractable even for n = 0.
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Finally, we examine the related integrals

(1.19) Coly) = /Ooocos(xy) <Sir;x>2nd:c

Dy(z) = /Ooosin(a:y) (Sh;x)%dx

the first of which is given incorrectly in [3, 4]. By setting a = iy in (1.13), assuming y
is real, and separating the real and imaginary parts, we find, 6 denoting the unit step
function,
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