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A family of definite integrals

Anthony Sofo

Abstract. An investigation into a family of definite integrals containing log func-

tions will be undertaken in this paper. It will be shown that Euler sums play an
important part in the solution of these integrals and may be represented as a BBP

type formula. In a special case we prove that the corresponding log integral can

be represented as a linear combination of the product of zeta functions and the
Dirichlet beta function.

1. Introduction Preliminaries and Notation

The motivation for this paper was inspired by the recent work of Henry and Moll
[4]. In that paper the authors compiled a list of integrals related to special functions
such as the Dirichlet beta function. In this paper we investigate a family of integrals
with logarithmic integrand containing some parameters. It will be shown that the
solution of this family of integrals may be expressed as a BBP- type representation and
include some classical constants such as the Riemann zeta function and the Dirichlet
beta function. In particular we investigation a family of integrals of the type

(1.1) I (a, q) =

∫
x∈(α,β)

lnp (x)

1 + x2
log
(

1 + x2(2q+1)
)
dx,

where p ∈ N0, q > − 1
2 and for the two domains of x ∈ (0, 1) and x ∈ (0,∞) . We

shall represent the resulting integral (1.1) in closed form in terms of special functions
including the Riemann zeta function and harmonic numbers. Other related papers
dealing with Euler sums are [7], [8], [9] and the excellent books [15] and [16]. The
following special functions will be used in the analysis of the integral (1.1). The
polylogarithm function Lip(z) is, for |z| 6 1

(1.2) Lip(z) =

∞∑
m=1

zm

mp
.
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62 ANTHONY SOFO

The well known result
ζ (z) + η (z) = 2λ (z)

connects the zeta function ζ (z) =
∑∞
n=1

1
nz , with the alternating zeta function η (z)

and the odd zeta function λ (z) . The zeta function has a simple pole at z = 1. The
Dirichlet beta function, β (z) or Dirichlet L function is given by, see Finch [3]

(1.3) β (z) =

∞∑
n=0

(−1)
n

(2n+ 1)
z ; z > 0

where β (2) = G is Catalan’s constant. The Dirichlet beta function can be represented
in powers of π at positive odd integer values of z, such that

β (2m+ 1) =
(−1)

m
E (2m)

22m+2 (2m)!
π2m+1

where E (·) are the Euler numbers generated by

1

cosh z
=

2ez

e2z + 1
=

∞∑
n=0

E (n) zn

n!
.

The Dirichlet beta function can be analytically extended to the whole complex plane,
has no singularities in the complex plane and is given by the functional equation

β (1− z) =

(
2

π

)z
sin
(πz

2

)
Γ (z)β (z) .

The Euler beta function,

B (x, y) =
Γ (x) Γ (y)

Γ (x+ y)
, for Rex > 0, Re y > 0(1.4)

=

1∫
0

tx−1 (1− t)y−1
dt = 2

π
2∫

0

(sin θ)
x−1

(cos θ)
y−1

dθ,

and the Gamma function,

Γ (z) =

+∞∫
0

tz−1e−tdt.

For real values of x, ψ(x) is the digamma (or psi) function defined by

ψ(x) :=
d

dx
{log Γ(x)} =

Γ′(x)

Γ(x)
.

We know that for n > 1, ψ(n+ 1)−ψ(1) = Hn with ψ(1) = −γ, where γ is the Euler
Mascheroni constant and ψ(n) is the digamma function. The polygamma function

ψ(k)(z) =
dk

dzk
{ψ(z)} = (−1)

k+1
k!

∞∑
r=0

1

(r + z)
k+1

and has the recurrence

ψ(k)(z + 1) = ψ(k)(z) +
(−1)

k
k!

zk+1
.
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The connection of the polygamma function with harmonic numbers is,

H(m+1)
z = ζ (m+ 1) +

(−1)
m

m!
ψ(m) (z + 1) , z 6= {−1,−2,−3, ...} .

=
(−1)

m

m!

1∫
0

(1− tz)
1− t

lnm t dz(1.5)

We expect that integrals of the type (1.1) may be represented by Euler sums and
therefore in terms of special functions such as the Riemann zeta function. A search
of the current literature has found some examples for the representation of the log-log
integrals in terms of Euler sums, see [1] and [17]. The following papers [10], [11], [12]
and [13] also examined some integrals in terms of Euler sums. Some examples will be
given highlighting specific cases of the integrals, some of which are not amenable to a
computer mathematical package.

2. Analysis of Integrals

Consider the following.

Theorem 1. Let (p, q) ∈ N0, the following integral,

(2.1) I (p, q) =

1∫
0

lnp (x)

1 + x2
ln
(

1 + x2(2q+1)
)
dx

(2.2) = (−1)
p
p!
∑
n>1

(−1)
n+1

Hn

2q∑
j=0

(−1)
j

(2 (2q + 1)n+ 2j + 1)
p+1

where Hn are harmonic numbers.

Proof. For x ∈ (0, 1) and from

ln
(

1 + x2(2q+1)
)

=
∑
n>1

(−1)
n+1 x

2(2q+1)n

n

it follows that

ln
(
1 + x2(2q+1)

)
1 + x2

=
∑
n>1

(−1)
n+1

Hn

2q∑
j=0

(−1)
j
x2(2q+1)n+2j

and therefore

lnp (x) ln
(
1 + x2(2q+1)

)
1 + x2

=
∑
n>1

(−1)
n+1

Hn

2q∑
j=0

(−1)
j
x2(2q+1)n+2j lnp (x) .

Integrating both sides for x ∈ (0, 1), we have

1∫
0

lnp (x) ln
(
1 + x2(2q+1)

)
1 + x2

dx =
∑
n>1

(−1)
n+1

Hn

2q∑
j=0

(−1)
j

1∫
0

x2(2q+1)n+2j lnp (x) dx
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= (−1)
p
p!
∑
n>1

(−1)
n+1

Hn

2q∑
j=0

(−1)
j

(2 (2q + 1)n+ 2j + 1)
p+1

and this is the BBP-type representation for the integral (2.1). �

The next corollary deals with an alternative representation for the integral (2.1).

Corollary 1. For p ∈ N0,and q ∈ R > − 1
2 then

(2.3) I (p, q) =
(−1)

p
p!

22p+2

∑
n>1

(−1)
n+1

n

(
H

(p+1)

n(q+ 1
2 )− 1

4

−H(p+1)

n(q+ 1
2 )− 3

4

)
.

Also

I (p, q) =

π
4∫

0

lnp (tan θ) (ln 2− (2q + 1) ln (1 + cos (2θ))) dθ

+

π
4∫

0

lnp (tan θ) ln

(
q∑
r=0

(
2q + 1

2r

)
(cos (2θ))

2r

)
dθ,(2.4)

where H
(p+1)

n(q+ 1
2 )

are harmonic numbers of order p+ 1.

Proof. A Taylor series expansion of

ln
(

1 + x2(2q+1)
)

=
∑
n>1

(−1)
n+1

n
x2(2q+1)n

allows us to write

I (p, q) =
∑
n>1

(−1)
n+1

n

∑
r>0

(−1)
r

1∫
0

x2r+2(2q+1)n lnp (x) dx

= (−1)
p
p!
∑
n>1

(−1)
n+1

n

∑
r>0

(−1)
r

(2r + 1 + 2 (2q + 1)n)
p+1

= (−1)
p
p!
∑
n>1

(−1)
n+1

(−1)
p

np!22p+2

(
ψ(p)

(
n

(
q +

1

2

)
+

3

4

)
− ψ(p)

(
n

(
q +

1

2

)
+

1

4

))
.

From the identity (1.5) we obtain the required identity

I (p, q) =
(−1)

p
p!

22p+2

∑
n>1

(−1)
n+1

n

(
H

(p+1)

n(q+ 1
2 )− 1

4

−H(p+1)

n(q+ 1
2 )− 3

4

)
.

The integral (2.4) is obtained by substituting x = sin θ and then using the trigono-
metric identity

tan2 θ =
1− cos (2θ)

1 + cos (2θ)
.

�
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Remark 1. For (p, q) ∈ N0, we see from (2.2) and (2.3) the remarkable Euler sum
identity ∑

n>1

(−1)
n+1

Hn

2q∑
j=0

(−1)
j

(2 (2q + 1)n+ 2j + 1)
p+1

=
1

22p+2

∑
n>1

(−1)
n+1

n

(
H

(p+1)

n(q+ 1
2 )− 1

4

−H(p+1)

n(q+ 1
2 )− 3

4

)

The next corollary deals with a negative exponent in the second log term of the
integral (2.1).

Corollary 2. Let a = 2 (2q + 1) then

I (p,−a) =

1∫
0

lnp (x)

1 + x2
ln
(

1 + x−2(2q+1)
)
dx

= I (p, a)− a


(−1)mE(2m)π2m+1

22(m+1) , for p = 2m− 1, m ∈ N

− (2m+ 1)!β (2m+ 2) , for p = 2m, m ∈ N
,(2.5)

where E (·) are the Euler, secant or Zig numbers given as A000364 in the On-line
Encyclopedia of Integer sequences [6], and β (·) are the Dirichlet Beta functions (1.3),
and where G = β (2) is known as Catalan’s constant.

Proof. Now

I (p,−a) =

1∫
0

lnp (x)

1 + x2
ln
(
1 + x−a

)
dx

=

1∫
0

lnp (x)

1 + x2
(ln (1 + xa)− a ln (x)) dx

= I (p, a)− a
1∫

0

lnp+1 (x)

1 + x2
dx.

to evaluate the integral

(2.6) J (p+ 1) =

1∫
0

lnp+1 (x)

1 + x2
dx

we employ a Taylor series expansion of the integrand, integrate, for x ∈ (0, 1) and we
have

1∫
0

lnp+1 (x)

1 + x2
=

(−1)
p+1

(p+ 1)!

22(p+2)

(
ζ

(
p+ 2,

1

4

)
− ζ

(
p+ 2,

3

4

))
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where ζ (p+ 2, ·) is the classical Hurwitz zeta function defined by

ζ (p, b) =
∑
n>0

1

(n+ b)
p , Re p > 1.

Considering the odd and even values of p, we have

1∫
0

lnp+1 (x)

1 + x2
=


(−1)mE(2m)π2m+1

22(m+1) , for p = 2m− 1, m ∈ N

− (2m+ 1)!β (2m+ 2) , for p = 2m, m ∈ N
,

and (2.5) is obtained. �

Some examples follow.

Example 1. For p ∈ N, q = − 1
2 ,

I
(
p,− 1

2

)
= ln 2

1∫
0

lnp x

1 + x2
dx = J (p) ln 2

= (−1)
p
p! ln 2

∑
n>0

(−1)
n

(2n+ 1)
p+1

.

= (−1)
p
p!β (p+ 1) ln 2.

For p ∈ 0, q = − 1
4 ,

I
(
0,− 1

4

)
=

1∫
0

ln (1 + x)

1 + x2
dx =

π

8
ln 2

=
1

4

∑
n>1

(−1)
n+1

n

(
Hn

4−
1
4
−Hn

4−
3
4

)
,

this integral is also evaluated by Bradley [2]. Also from (2.5)

1∫
0

ln
(
1 + x−1

)
1 + x2

dx =
π

8
ln 2 +G

where G =
∑
n>0

(−1)n+1

(2n+1)2.
is Catalan’s constant. It is interesting to note that G may be

represented as the sum of positive terms, in the following way. Let

X =

1∫
0

tanh−1
√

1− x2

√
1− x2

dx

and by the substitution x = sin θ

X =

π
2∫

0

tanh−1 (cos θ) dθ =
1

2

π
2∫

0

(ln (1 + cos θ)− ln (1− cos θ)) dθ,
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these integrals are evaluated by Bradley [2], so that

X =
1

2

(
2G− π

2
ln 2 + 2G+

π

2
ln 2
)

= 2G.

Now by a Taylor series expansion

X =
∑
n>0

π
2∫

0

cos2n+1 θ

2n+ 1
dθ =

∑
n>0

B
(

1
2 , n+ 1

)
2 (2n+ 1)

,

in which case the identity

G =
1

4

∑
n>0

B
(

1
2 , n+ 1

)
2n+ 1

=
∑
n>0

(−1)
n+1

(2n+ 1)
2
.

= L (2, χ)

follows, where χ is the non-principal character of modulo 4 and B (·, ·) is the classical
Euler Beta integral (1.4).

For p = 0, q = 0

I (0, 0) =

1∫
0

ln
(
1 + x2

)
1 + x2

dx =

π
4∫

0

ln
(
1 + tan2 θ

)
dθ = −2

π
4∫

0

ln (cos θ) dθ

=
π

2
ln 2−G.

We also have,
1∫

0

ln
(
1 + x−2

)
1 + x2

dx =
π

2
ln 2 +G.

For p = 0, q = 1
4

I
(
0, 1

4

)
=

1∫
0

ln
(
1 + x3

)
1 + x2

dx =

π
4∫

0

ln
(
1 + tan3 θ

)
dθ

=
π

8
ln 2 +

π

3
ln
(

2 +
√

3
)
− 5

3
G

=
1

4

∑
n>1

(−1)
n+1

n

(
H 3n

4 −
1
4
−H 3n

4 −
3
4

)
We also have,

1∫
0

ln
(
1 + x−3

)
1 + x2

dx =
π

8
ln 2 +

π

3
ln
(

2 +
√

3
)

+
4

3
G.

For p = 0, q = 1
2

I
(
0, 1

2

)
=

1∫
0

ln
(
1 + x4

)
1 + x2

dx =

π
4∫

0

ln
(
1 + tan4 θ

)
dθ
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and using the identity tan2θ = 1−cos(2θ)
1+cos(2θ) , we have

I
(
0, 1

2

)
=

π
4∫

0

(ln (3 + cos (4θ))− 2 ln (1 + cos (2θ))) dθ

= −π
4

ln
(

6− 4
√

2
)
− 2G+

π

4
ln 4

=
π

4
ln
(

6 + 4
√

2
)
− 2G

=
1

4

∑
n>1

(−1)
n+1

n

(
Hn

2−
1
4
−Hn

2−
3
4

)
,

and

1∫
0

ln
(
1 + x−4

)
1 + x2

dx =
π

4
ln
(

6 + 4
√

2
)

+ 2G.

For p = 0, q = 1

I (0, 1) =

1∫
0

ln
(
1 + x6

)
1 + x2

dx =

π
4∫

0

ln
(
1 + tan6 θ

)
dθ

=

π
4∫

0

(
ln
(
2 + 6 cos2 (2θ)

)
− 3 ln (1 + cos (2θ))

)
dθ

=
π

4
ln 2 +

π

2
ln

(
3

2

)
− 3G+

3π

4
ln 2

=
π

2
ln 6− 3G

=
∑
n>1

(−1)
n+1

Hn

(
1

6n+ 1
− 1

6n+ 3
+

1

6n+ 5

)
,

and

1∫
0

ln
(
1 + x−6

)
1 + x2

dx =
π

2
ln 6 + 3G.
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For p = 0, q = 2

I (0, 2) =

1∫
0

ln
(
1 + x10

)
1 + x2

dx =

π
4∫

0

ln
(
1 + tan10 θ

)
dθ

=

π
4∫

0

ln
(
2 + 20 cos2 (2θ) + 10 cos4 (4θ)

)
dθ − 5

(
G− π

2
ln 2
)

= −π
4

ln

(
8

5

(
9− 4

√
5
))
− 5

(
G− π

2
ln 2
)

=
π

4
ln

(
20

5 + 8β

)
− 5G

=
∑
n>1

(−1)
n+1

Hn

(
1

10n+ 1
− 1

10n+ 3
+

1

10n+ 5
− 1

10n+ 7
+

1

10n+ 9

)
,

where β = 1−
√

5
2 , and

1∫
0

ln
(
1 + x−10

)
1 + x2

dx =
π

4
ln

(
20

5 + 8β

)
+ 5G.

For p = 1, q = 0

I (1, 0) =

1∫
0

lnx ln
(
1 + x2

)
1 + x2

dx =

π
4∫

0

ln (tan θ) ln
(
1 + tan2 θ

)
dθ

= −2

π
4∫

0

ln (tan θ) ln (cos θ) dθ

=

π
4∫

0

(
2 ln2 (cos θ)− 2 ln (cos θ) ln (sin θ)

)
dθ

= −
∑
n>1

(−1)
n+1

Hn

(2n+ 1)
2

= −G ln 2− π3

64
− π

16
ln2 2

−2i

(
Li3

(
1 + i

2

)
+

5π2

192
ln 2− 1

48
ln3 2− 35

64
ζ (3)

)
.

From Lewin ( [5], p.164,296) we have that

Re

(
Li3

(
1 + i

2

))
=

1

48
ln3 2 +

35

64
ζ (3)− 5π2

192
ln 2
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and therefore

I (0, 1) = 2 Im

(
Li3

(
1 + i

2

))
−G ln 2− π3

64
− π

16
ln2 2.

Sofo and Nimbran [14] have shown that the imaginary part of the trilogarithm:

W (3) := Im Li3

(
1± i

2

)
=
∑
n>1

sin
(
nπ
4

)
2
n
2 n3

=
∑
n>1

(−1)n+1

22n

(
2

(4n− 3)
3 +

2

(4n− 2)
3 +

1

(4n− 1)
3

)
,

and finally we have

I (0, 1) = 2W (3)−G ln 2− π3

64
− π

16
ln2 2.

Also, we have

1∫
0

lnx ln
(
1 + x−2

)
1 + x2

dx = 2W (3)−G ln 2− 9π3

64
− π

16
ln2 2.

For p = 1, q = − 1
4

I
(
1,− 1

4

)
=

1∫
0

lnx ln (1 + x)

1 + x2
dx =

3π

32
ln2 2− 2G ln 2 +

11π3

128
− 3W (3) ,

and
1∫

0

lnx ln
(
1 + x−1

)
1 + x2

dx =
3π

32
ln2 2− 2G ln 2− 5π3

128
− 3W (3) .

For p = 2, q = − 3
8

I
(
2,− 3

8

)
=

1∫
0

ln2 (x) ln (1 +
√
x)

1 + x2
dx =

π
4∫

0

ln2 (tan θ) ln
(

1 +
√

tan θ
)
dθ

=
π3

64
ln
(

39202 + 27720
√

2
)
− π2

3
G− 2β (4)

=
1

32

∑
n>1

(−1)
n+1

n

(
H

(3)
n
8−

1
4

−H(3)
n
8−

3
4

)
,

and

1∫
0

ln2 (x) ln
(

1 + x−
1
2

)
1 + x2

dx =
π3

64
ln
(

39202 + 27720
√

2
)
− π2

3
G+ β (4) .
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For p = 4, q = − 1
4

I
(
4,− 1

4

)
=

1∫
0

ln4 (x) ln (1 + x)

1 + x2
dx =

π
4∫

0

ln4 (tan θ) ln (1 + tan θ) dθ

=
7π4

30
G+

5π5

128
ln 2 + 2π2β (4)− 48β (6)

=
3

128

∑
n>1

(−1)
n+1

n

(
H

(5)
n
4−

1
4

−H(5)
n
4−

3
4

)
,

and
1∫

0

ln4 (x) ln
(
1 + x−1

)
1 + x2

dx =
7π4

30
G+

5π5

128
ln 2 + 2π2β (4) + 60β (6) .

For p = 2, q = 0

I (2, 0) =

1∫
0

ln2 x ln
(
1 + x2

)
1 + x2

dx =

π
4∫

0

ln2 (tan θ) ln
(
1 + tan2 θ

)
dθ

= −2

π
4∫

0

ln2 (tan θ) ln (cos θ) dθ

= 2
∑
n>1

(−1)
n+1

Hn

(2n+ 1)
3 =

1

32

∑
n>1

(−1)
n+1

n

(
H

(3)
n
2−

1
4

−H(3)
n
2−

3
4

)
=

7πζ (3)

8
+
π3

8
ln 2− 6β (4) ,

also
1∫

0

ln2 x ln
(
1 + x−2

)
1 + x2

dx =
7πζ (3)

8
+
π3

8
ln 2 + 6β (4) .

In the next theorem we consider the integral (2.1) on the positive half plane x > 0.

Theorem 2. For p ∈ N, q > − 1
2

(2.7) Y (p, q) =

∞∫
0

lnp (x)

1 + x2
ln
(

1 + x2(2q+1)
)
dx

(2.8) =


(2q+1)(−1)mE(2m)π2m+1

22m+1 , for p = 2m− 1, m ∈ N

2I (2m, q) + 2 (2q + 1) (2m+ 1)!β (2m+ 2) , for p = 2m, m ∈ N
,
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where

(2.9) f (p, q, x) =
lnp (x)

1 + x2
ln
(

1 + x2(2q+1)
)
,

E (2m) are the Euler or secant numbers and β (2m+ 2) are the Dirichlet Beta func-
tions.

Proof. We begin with

Y (p, q) =

∞∫
0

lnp (x)

1 + x2
ln
(

1 + x2(2q+1)
)
dx =

∞∫
0

f (p, q, x) dx

and put

Y (p, q) =

∞∫
0

f (p, q, x) dx =

1∫
0

f (p, q, x) dx+

∞∫
1

f (p, q, x) dx,

we notice that f (p, q, x) is continuous, bounded and differentiable on the interval
x ∈ (0, 1] , with lim

x→0+
f (p, q, x) = lim

x→1
f (p, q, x) = 0, then

∞∫
0

f (p, q, x) dx =

1∫
0

f (p, q, x) dx+(−1)
p

1∫
0

lnp (t)

1 + t2

(
ln
(

1 + t2(2q+1)
)
− (2q + 1) ln (t)

)
dt

where we have made the transformation xt = 1. Collecting integrals, we have

Y (p, q) = (1 + (−1)
p
) I (p, q)− 2 (−1)

p
(2q + 1)

1∫
0

lnp+1 (x)

1 + x2
dx

= (1 + (−1)
p
) I (p, q)− 2 (−1)

p
(2q + 1) J (p+ 1)

where J (p+ 1) is given by (2.6). We can consider the two separate cases of p odd and
even such that

Y (p, q) =


(2q+1)(−1)mE(2m)π2m+1

22m+1 , for p = 2m− 1, m ∈ N

2I (2m, q) + 2 (2q + 1) (2m+ 1)!β (2m+ 2) , for p = 2m, m ∈ N
,

and the proof is finished. �

Some examples follow.

Example 2. For p = 2, q = − 3
8

Y
(
2,− 3

8

)
=

∞∫
0

ln2 (x) ln (1 +
√
x)

1 + x2
dx

=
π3

32
ln
(

39202 + 27720
√

2
)
− 2π2

3
G− β (4) .
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For p = 4, q = − 1
4

Y
(
4,− 1

4

)
=

∞∫
0

ln4 (x) ln (1 + x)

1 + x2
dx

=
7π4

15
G+

5π5

64
ln 2 + 4π2β (4) + 24β (6) .

For p = 3, q = 1

Y (3, 1) =

∞∫
0

ln3 (x) ln
(
1 + x6

)
1 + x2

dx =
15π5

32
.

Concluding Remarks. We have carried out a systematic study of a family of inte-
grals containing log− log functions in terms of Euler sums. We believe most of our
results are new in the literature and have given many examples some of which are not
amenable to a mathematical computer package.
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