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Inequalities of Jensen’s Type for K-Bounded Modulus Convex
Complex Functions

Silvestru Sever Dragomir!-?

ABSTRACT. Let D C C be a convex domain of complex numbers and K > 0. We
say that the function f: D C C — C is called K-bounded modulus convez, for the
given K > 0, if it satisfies the condition

=2 F @)+ A () = £ (L= N+ M)] £ SEAQ=X) [ =y

for any z, y € D and A € [0,1].

In this paper we establish some new Jensen’s type inequalities for the complex
integral on v, a smooth path from C and K-bounded modulus convex functions.
Some examples for the complex exponential and complex logarithm are also given.

1. Introduction

Let (X; |- x) and (Y7 ||-|ly) be two normed linear spaces over the complex number
field C. Let C be a convex set in X. In the recent paper [3] we introduced the following
class of functions:

DEFINITION 1. A mapping F : C C X =Y is called K-bounded norm convez, for
some given K > 0, if it satisfies the condition

1
L1 A=A F @) +AF () = F(A =Nz + M)y < SEA1=A) [z~ vllx
for any x, y € C and X € [0, 1]. For simplicity, we denote this by F € BNk (C).

We have from (1.1) for A = 5 the Jensen’s mequahty

z+y
oo (=) <
for any z, y € C.

We observe that BNk (C) is a convex subset in the linear space of all functions
defined on C' and with values in Y.

%
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In the same paper [3], we obtained the following result which provides a large
class of examples of such functions.

THEOREM 1. Let (X, ||| ) and (Y, ||-|ly) be two normed linear spaces, C' an open
convex subset of X and F : C —'Y a twice-differentiable mapping on C. Then for any
z,y € C and X\ € [0,1] we have

(12) (=N F (@) +AF ()~ F (1= N+ )y < gKA1=X) y— alk
where

(1.3) Kpy = sup IF" ()]l g x2,v)

is assumed to be finite, namely F € BNk, (C).
We have the following inequalities of Hermite-Hadamard type [3]:

THEOREM 2. Let (X;||||x) and (Y;|-|ly) be two normed linear spaces over the
complex number field C with Y complete. Assume that the mapping F : C C X - Y
is continuous on the convex set C in the norm topology. If F € BNk (C) for some
K > 0, then we have

F F ! 1
(1.4) Hw—/ F((1 =Xz + \y)dX SEKHx—yHi
0 Y
and
1
1
(15) /F((lmmy)dxF(”E;y)H < o Kl — ol
0 Y

for any x, y € C.

The constants % and 2

57 ore best possible.

Following [1, p. 59], let (X, ||| x) and (Y, |]-|ly-) be two normed linear spaces,
an open subset of X and F': Q =Y. If a € Q, u € X \ {0} and if the limit

}g%% [F (a+tu) — F (a)]

exists, then we denote this derivative 9, F (a) . It is called the directional derivative of
F at a in the direction wu. If the directional derivative is defined in all directions and
there is a continuous linear mapping ® from X into Y such that for all u € X

OuF (a) = @ (u),

then we say that F' is Gateaux-differentiable at a and that ® is the Gateaux differential
of F at a. If a mapping F is differentiable at a point a, then clearly all its directional
derivatives exist and we have

OuF (a) = F' (a)u, u e X.

Thus F is Gateaux-differentiable at a. However, the Gateaux differential may exist
without the differential existing. The existence of directional derivatives at a point
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does not imply that the mapping is Gateaux-differentiable. To distinguish the differ-
ential from the Gateaux differential, the differential is often referred as the Fréchet
differential.

In an earlier and more comprehensive version of [3], see [2], we also obtained the
following Jensen’s type discrete inequality:

THEOREM 3. Let (X;||||x) and (Y;|-|ly) be two normed linear spaces over the
complex number field C. Assume that the mapping F' : C C X — Y is defined on
the open convex set C and F € BNk (C) for some K > 0. If z, € C, pr > 0 for
ke {l,..,n} with > ;_,pr =1 and F is Gateaua-differentiable at > ,_, pyxy € C,
then for any y; € C and q; > 0 for j € {1,....,m} with 357" q; =1 and 377" q;y; =
> or_, peT) we have

(1.6) > aF(y)—F (me) % Z Yi— > DrTk
j=1 k=1 Jj=1 k=1

Y

In particular, we have
n n
(1.7) > piF ()~ F (Zpkxk)
j=1 k=1
If (X;{-,-)) is an inner product space, then

n n 2 n

2
ij l‘j—Zkak :ij sl % —
j=1 k=1 x J=1

and by (1.7) we have

19 [Sre)-F (Yo )| <8 oot -
j=1 k=1 j=1

Y

3

n
< %KZPJ‘ T — Zpkﬂ?k
7 k=1

1

Y

n 2
E Pk
k=1 b

CoROLLARY 1. Let (X,||x) and (Y,|-|ly) be two normed linear spaces, C an
open convexr subset of X and F : C — Y a twice-differentiable mapping on C. If
€ C,pr >0 for k€ {1,...,n} with Y ;_, pr =1, then

(19) |D_p;F(z;)—F <Zpkwk>
j=1 k=1

Y

Tj— Zpkfk

Let D C C be a convex domain of complex numbers and K > 0. Following
Definition 1, we say that the function F' : D C C — C is called K-bounded modulus
convez, for the given K > 0, if it satisfies the condition

1
> fsup [ F"( ”L X2 Y)Zp]

X

(110)  [(1=A)F(2)+A\F(y) = F((1 =Nz +\y)| < %Km )|z g
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for any x, y € D and X € [0, 1]. For simplicity, we denote this by F € BM (D).

All the above results can be translated for complex functions defined on convex
subsets D C C.

In the following, in order to obtain several inequalities for the complex integral,
we need the following facts.

Suppose v is a smooth path from C parametrized by z(t), t € [a,b] and f is a
complex function which is continuous on . Put z (a) = v and z (b) = w with u, w € C.
We define the integral of f on v, ., = as

/Wf(Z)dz—/%wf(z)dz = /abf(z(t))z/ () dt.

We observe that that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
~ is parametrized by z (t), t € [a, b], which is differentiable on the intervals [a, | and
[c, b], then assuming that f is continuous on vy we define

/7 f(z)dz = L f(z)dz+ [yw f(z)dz

where v := zz. This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
£ (2)|dz] == / f (2017 (1) di

u,w

and the length of the curve v is then

() = / GE / 1)t

Let f and g be holomorphic in D, and open domain and suppose v C D is a
piecewise smooth path from 2z (a) = u to 2z (b) = w. Then we have the integration by
parts formula

(1.11) f(2)g () dz = f(w) g (w) = f(u) g (u) */ f'(2) g (2) dz.

Yuayw Yuw

We recall also the triangle inequality for the complex integral, namely

/ f(2)dz| < / F @l 1dz] < £ o ()

where || f|, o = sup.¢, |f (2)].
We also define the p-norm with p > 1 by

191, = ( [uer |dz|)1/p.

19,0 = [ 1 @ 1ds.

(1.12)

For p =1 we have
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If p, ¢ > 1 with % + % = 1, then by Holder’s inequality we have
1
(TP Gl P
In the recent paper [5] we obtained the following results:

THEOREM 4. Let D C C be a convexr domain of complex numbers and K > 0.
Assume that f is holomorphic on D and f € BMgk (D). If v C D parametrized by
z(t), t € [a,b] is a piecewise smooth path from z (a) = u to z (b) = w and v € D, then

(1.13) dz{ ()Jrf’(v)(w;uv)}(wu) g;KA|zu|2|dz|

an

(114) \;[ﬂw)(wv)+f<u><vu>+f<v><wu>]/f<z>dz

1
< fK/ 1z — | |dz|.
4 vy

Motivated by the above results, in this paper we establish some new Jensen’s type
inequalities for the complex integral on 7y, a smooth path from C and K-bounded
modulus convex functions. Some examples for the complex exponential and complex
logarithm are also given.

2. General Integral Inequalities
We have:

THEOREM 5. Let G C C be a convex domain of complex numbers and K > 0 and
that F' is holomorphic on G with F € BMgk (G). Assume also that f : D — G is
continuous on D, v C D parametrized by z (t ), t € [a b] is a piecewise smooth path
from z (a) = u to z(b) = w with w # u and ufv z)dz € G, then

(2.1) ’wlu/v(Fof)(v)dv—F(wluLf(z)dz)‘

=27 w

Idvl

—aa e

PROOF. Let z, y € G. Since F' € BMg (G), then we have

[F(L=Na+Xy) = F(z)+A[F(x) - F(y)]] < %KA(l—)\) jz — y/?
that implies that
Fx+A(y—2z))— F(x)
A

KE(1-))z -yl

+F<x>—F<y>‘g

N | =

for A € (0,1).
Since F' is holomorphic on G, then by letting A — 04, we get

/() (g~ 2) + F () ~ F ()] < 5K | — o
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that is equivalent to

(22) IF ()~ F () = F (2) (g~ o) < 5K |y~ o

for all z, y € G.
If we take in (2.2) z = 1 J, f (2) dz, then we get

O e i)
F’<wiu/7f(z)dz> (ywiuLf(z)dz>'

for all y € G.
If we take in this inequality y = f (v), v € , then we get

A
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By using (2.4) and (2.5) we get

\wiuA<Fof><v>dv—F( iu/ﬂ i)

(Fof /f
|w <w u ),
P ( /f(z) dz) ( /f )‘ dol
w—u /, —u J,
K — 1@ Jao
-2 |w w—u/, vh
which proves the inequality (2.1). O

COROLLARY 2. With the assumptions of Theorem 5 and if

1F" |l o0 := sup [P (2)] < oo,
eG
z

2. ]wiuL<Fof><>dv (wiu/ﬂz)dz)\

- F/I
<zl

||Goo |w

REMARK 1. If we take D = G, v C G and f(z) = z, then by (26) we get the
Hermite-Hadamard type inequality (see also [5])

(2.7) wlulF(v)dv—F(w;_u)’

1 w+u
< 51 o gy [ o= 25

Iw u

provided F is holomorphic on G and |[F"||5 ., = sup.cq [F" (2)| < oco.
We also have:

THEOREM 6. Let G C C be a convex domain of complex numbers and K > 0 and
that F' is holomorphic on G with F € BMg (G). Assume also that f : D — G is
continuous on D, v C D parametrized by z (t), t € [a,b] is a piecewise smooth path
from z (a) = u to z (b) = w with w # u,

[,(Fopw) S
[ Fop@a

(2.8) / (F'o f)(v)dv #0 and
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f(F/Of)()
F( T F o) ) e
1 S, (F" o f)(
5 |w—u|/7

F’ ° f
PROOF. From (2.2) we get

(2.10) [F(y) = F(f () = F'(f(0)) (y = f (v))] < %K ly = f (@)

for any y € G and for v € D.
Taking the integral in (2.10) we get

then

(2.9)

*f(Z) |dz] .

1) |/| —F () (y— £ ()] o]
1 1 2
< 3Ky [ o 7 O b
for y € G.
Using the properties of integral and modulus, we also have
212 |1 [ 17 6) - F (7 w) - P (f ) (0 £ )]
S T — P () (g = f (w)]du]
for y € G.

Now, observe that

. /[F(y)—F(f(v))—F’ (f () (y = f (v))] dv

w—1u 5

1

—F(y) - - /(Fof)(v)dv

_u'y

1

w—u

[@Eon@ds = [ #on) @@

and by (2.11) and (2.12) we get the following inequality of interest

-y

1

w—u

(213) \F@) -t [ e

-y

/(F’Of)(v)dv+ﬁ/(F’Of)(v)f(v)dv

v
1

w—u

2

IN

for y € G.
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If we take in (2.13)

L) fydy
YT F ey dv
).

then we get the desired result (2.9

COROLLARY 3. With the assumptions of Corollary 2 and Theorem 6 we have

F'o v v) dv
219 F<f(f (F/fc? ;))(Z)(dl >_w1—u/ (Fof)(2)dz
F'o f) (v) f (v) dv ?
<317 g | (f e 1)

We have by the integration by parts formula (1.11) that

/F’(v)vdv = F(w)w—F(u)u—/F(v)dv
¥ ¥
and
/F’(v)dv:F(w)—F(u).
o
Therefore we can state the following result as well:

REMARK 2. Let G C C be a conver domain of complex numbers and that F is
holomorphic on G with ||[F"| s = sup.cq [F" ()| < co. Assume also that v C D
parametrized by z (t) , t € [a,b] is a piecewise smooth path from z (a) = u to z (b) = w
with w # u, F (w) # F (u) and
Fw)w—F(uu- [ F(v)dv

F(w) = F (u)

(2.15) €q,

then by (2.14) we get

F(w)w—F(uwu— [ F(v)dv 1
F( F (w) — F(u) >_wu[YF(z>dZ

1, ., 1 Fw)w—F(uu-— [ F(v)dv
< 31 o gy |

F(w) = F (u)
3. Some Examples

(2.16)

—z| |dz].

If we consider the function F' (z) = exp z, z € C and v C C parametrized by z (t),
t € [a,b] is a piecewise smooth path from z (a) = u to z (b) = w with w # u, then by
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(2.6) we have for continuous function f: vy — C

Lf)

(3.1) 1L(expof) (v)dvexp(

w—u

< el g [ 10 =5 [ @]
while from (2.6) we obtain
o e"pz_zxp“exp(”‘”;“)\
3 lexplg o0 T “’” o
From (2.14) we get
[, (expof) (v) f (v) do
(3.3) ’exp( f (oxpof) (v) do - u/ expof)(
1 J, (expof) (v) £ (v) dv i
< g Il o | ”f et~ )] 1.

while from (2.15) we get

(3.4)

(w—1)expw — (u—1)expu exXpw — exp u
ex —
P exXpw — expu w—u

—lexpw —(u—1)expu

”eXp”GOO |w expw — expu

Consider the function F' (z) = Log (z) where Log (z) = In |z|+iArg (z) and Arg (2)
is such that —m < Arg(z) < w. Log is called the ”principal branch” of the complex
logarithmic function. F is analytic on all of L := C\{x +iy:2 <0, y =0} and
F’(z) = 1 on this set.

If we consider g : D — C, g(z) = % where D C L, then F is a primitive of g
on D and if v C D parametrized by z (t), t € [a,b] is a piecewise smooth path from
z(a) = u to z (b) = w, then

z

/ d _ Log (w) — Log (u) .

Also, the function G : L — C, G (2) = zLog () — z is analytic on L and G’ (2) =
Log (z), z € L.

Assume also that f : D — L is continuous on D, v C D parametrized by z (t),
t € [a,b] is a piecewise smooth path from 2z (a) = u to 2 (b) = w with w # u and
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—L [, f(2)dz € L, then from (2.1) for F(2) = Logz, we get

(3.5) ’wiufy(lzogof) (v)dv—Log( ! /Wf(z) dz>

w—u
1 1 1
< s@ma LV O - [ 1@

where d., := inf.c, || is assumed to be positive and finite.
For v C L and f () = z, we get from (3.5) that

(36) ’wLog (w) ~ulog(w) ;- <w—|—u> .

w—u 2 ‘
<1 1 /
T 2d2 |lw—ul /,

where d., := inf ¢, |2| is assumed to be positive and finite.
Further, for F (z) = Logz we have

2
|dv|,

2
vfw—’_u |d’U|,

wLogw — uLogu — f,y Logzdz
Logw — Logu

wLogw — uLogu — wLog (w) + w + uLog (u) — u
Logw — Logu

B w—1u
~ Logw — Logu’
So, if Logw # Logu and
w—1u

Logw — Logu
then by (2.16) we get

(3.7)

Loo < w—u > _ wLog (w) — uLog ()

Logw — Logu w—u
—u

< 1 1 / w
~ 2d2 |w—u| J, | Logw — Logu
Assume also that f : D — L is continuous on D, v C D parametrized by z (t),

t

t € [a,b] is a piecewise smooth path from z(a) = u to z(b) = w with w # u and

—L_ [ f(2)dz € L, then from (2.1) for F (2) = 27!, we get
) 7 vy

o ferta- (5 free)

1 1
SCM/Y f(v)_HLf(z)dZ

where d., := inf ¢, |2| is assumed to be positive and finite.

2
—z| |dz]|.

(3.8)

2
|dvl,

21
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(3.9) Log (w) — Log (u) <w+u>—1 < |w1_u|/

S. S. DRAGOMIR

For vy C L and f (z) = z, we get from (3.8) that

w—+u 2
2

v —

5 |dv| .

w—1u

Further, for F (z) = 27! we have

F(w)w—F (u)u— va(v) dv  —Log(w) + Log (u)

F(w)— F(u) %—%
L — L
_ Log(w)~ Log(w)
w—u
for w # u and u, w € L.
If w # u and u, w € LL with
L — L
o9 (w) = Log(w) -

w—u

then by (2.16) we get

(3.10) (

(1]
(2]

(3]

(4]

(5]

[6]

w—u w—u

<! /
T B w—ul ),
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