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A special collection of definite integrals

Michael Henry and Victor H. Moll

Abstract. A compiled list of definite integrals related to special constants is

presented. These include Riemann zeta function and the Dirichlet beta function.

1. Introduction

The goal of the current work is to present in a unified manner a collection of
definite integrals involving some classical function, such as

(1.1) ζ(s) =

∞∑
n=1

1

ns
,

(1.2) λ(s) =

∞∑
n=0

1

(2n+ 1)s
= (1− 2−s)ζ(s)

and their alternating counterparts,

(1.3) η(s) =

∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s),

(1.4) β(s) =

∞∑
n=0

(−1)n

(2n+ 1)s
.

These functions are named after Riemann and Dirichlet in view of their studies in
relation to the distribution of prime numbers. The reader will find in [5] information
on these functions.

These functions have corresponding finite counterparts. The notation used here
is meant to be suggestive. For instance,

(1.5) ζN (s) =

N∑
n=1

1

ns
,
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and similar for the other functions. A common notation for the harmonic numbers,
ζN (1), is HN . Analogously, we have

(1.6) λN (s) =

N∑
n=0

1

(2n+ 1)s
,

(1.7) ηN (s) =

N∑
n=1

(−1)n−1

ns
,

and

(1.8) βN (s) =

N∑
n=0

(−1)n

(2n+ 1)s
.

There is a large variety of relations among these functions, for instance,

(1.9) 2λN (1) = 2ζ2N (1)− ζN (1).

The goal of the paper is to present the evaluation of definite integrals and express
them in terms of these functions.

2. Classical forms and β sums

The first evaluation generalizes an identity appearing in [5, p. 55] we find the
double sum identity

∞∑
n=1

(−1)n−1λn−1(1)

n2
= πG− 7ζ(3)

4
,

where G is the Catalan’s constant defined by

(2.1) G =

∞∑
n=0

(−1)n

(2n+ 1)2
.

A well known classical result is:

Theorem 2.1. The evaluation∫ 1

0

(arctanx)2

x
dx =

πG

2
− 7ζ(3)

8
,

holds.

Proof. This is classical and is obtained by expanding the integrand in power
series. Details appear in [2]. �

The next result presents a generalization.

Theorem 2.2. Let α > 1. Then∫ 1

0

(arctanx1/α)2

x
dx = α

∫ 1

0

(arctanx)2

x
dx.
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Proof. Here we write λn(1) = λn. It is known that
∞∑
n=1

(−1)n−1λn−1x
2n

n
= (arctanx)2.

Replace x by x1/α to produce

(2.2)

∞∑
n=1

(−1)n−1λn−1(x1/α)2nx−1

n
=

(arctanx1/α)2

x
.

Integrate both sides, and evaluate the left side in terms of

(2.3)
(−1)n−1λn−1

n

∫ 1

0

(x1/α)2nx−1dx =
λn−1

n

∫ 1

0

x(2n−α)/αdx.

Now use

(2.4)

∫
x(2n−α)/αdx =

α(x1/α)2n

2n
,

to obtain

(2.5)
α

2

∞∑
n=1

(−1)n−1λn−1(1)(x1/α)2n

n2
dx =

∫ x

0

(arctan t1/α)2

t
dt.

Therefore

(2.6)
α

2

∞∑
n=1

(−1)n−1λn−1

n2
dx = α

∫ 1

0

(arctanx)2

x
dx,

and this becomes

(2.7)

∫ 1

0

(arctanx1/α)2

x
dx = α

∫ 1

0

(arctanx)2

x
dx.

The proof is complete. �

Example 2.1. An attractive special case is

(2.8)

∫ 1

0

(arctan 8
√
x)2

x
dx = 4πG− 7ζ(3).

Example 2.2. The previous example is now compared with the evaluation

(2.9)

∫ 1

0

(arcsin 8
√
x)2

x
dx = 2π2 log 2− 7ζ(3),

appearing in [2, p. 122], written in the equivalent form∫ 1

0

(arcsinx)2

x
dx =

π2 log 2

4
− 7ζ(3)

8
.

There is also an indeterminate form of these evaluations:

(2.10)

∫ x

0

(arcsin t)2

t
dt =

∞∑
n=1

4n−1

n3
(

2n
n

)x2n.

The previous examples are now generalized.
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Proposition 2.1. If α > 1, then∫ 1

0

(arcsinx1/α)2

x
dx = α

∫ 1

0

(arcsinx)2

x
dx.

Proof. Use the series (2.10) and follow the proof of Proposition 2.2 to obtain
the result. �

Note 2.1. The evaluation in Example 2.2 is connected to the integral

(2.11) 2

∫ π/2

0

x ln sinx dx = −
(π2 log 2

4
− 7ζ(3)

8

)
appearing in [7, p. 234].

Note 2.2. A direct application of the identity

(2.12) arctanx = arcsin
x√

x2 + 1

combined with (2.10) gives

(2.13) 4

∫ 1

0

(arctanx)2

x
dx =

∞∑
n=1

2n

n3
(

2n
n

) = 2πG− 7ζ(3)

2
.

The next results follow closely from the discussion presented in [2, p. 129-133].
Start with the classical expansion of the cotangent function (see [10])

(2.14) x cotx = 1− 2

∞∑
n=1

ζ(2n)

π2n
x2n.

and use

(2.15)
sinx

x
=

∞∏
n=1

[
1−

( x

πn

)2]
,

and
d( ln sinx )

dx
= cotx

to obtain the series expansion (2.14) involving ζ(2n). The following expansions are
established next:

(2.16) cotx =
1

x
−
∞∑
n=1

(−1)n−1 22nB2n

(2n)!
x2n−1

and

(2.17) secx =

∞∑
n=0

(−1)n
E2n

(2n)!
x2n.

and this yields

(2.18) ζ(2n) = (−1)n−1 4n−1B2n

(2n)!
π2n and β(2n+ 1) = (−1)n

E2n

4n+1(2n)!
π2n+1.
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Proposition 2.2. The expansion of the secant function is given by

(2.19) secx =

∞∑
n=0

4n+1β(2n+ 1)

π2n+1
x2n.

Proof. Start from the right-hand side of (2.18) to produce

(2.20) E2n = (−1)n
22(n+1)(2n)!β(2n+ 1)

π2n+1
.

Now recall the expansion of the inverse Gudermannian (viz series no. 754 in [6]) to
obtain

(2.21) gd−1(x) = log(secx+ tanx) = x+

∞∑
n=1

E2n

(2n+ 1)!
x2n+1

and by substitution of (2.20) produces

log(secx+ tanx) = x+

∞∑
n=1

(−1)n
4n+1β(2n+ 1)

π2n+1(2n+ 1)
x2n+1.(2.22)

A simple calculation now gives the result. �

Proposition 2.2 yields the identity

(2.23)
π

2
sec

πx

2
= 2

∞∑
n=0

β(2n+ 1)x2n,

that is the even-series analogue of

(2.24) π cotπx =

∞∑
n=1

ζ(2n)x2n−1.

Note 2.3. In connection to the inverse Gudermannian used in the argument
above, note two interesting integrals that appear in the literature:

(2.25)

∫ π/2

0

log(secx+ tanx)dx = 2G

and

(2.26)

∫ π/2

0

x log(secx+ tanx)dx =
7ζ(3)

4
.

These are connected to the present context by the identity

(2.27)

∫ π/2

0

(π
2
− x
)

gd−1x dx =

∫ 1

0

(arctanx)2

x
dx.

The next result appears in [11]. The ideas there are related to the argument in
[4].

Theorem 2.3. (Yue and Williams) The Apéry constant ζ(3) is given by

ζ(3) = −π2
∞∑
n=1

ζ(2n)

22n−1(2n+ 2)(2n+ 3)
.
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Proof. This is just a reproduction of the proof given in the sources mentioned
above. It is given for completeness purpose.

Recall that ∫ t

0

(arcsinx)2

x
dx =

∞∑
n=1

4n−1

n3
(

2n
n

) t2n,
and therefore, ∫ sin t

0

(arcsinx)2

x
dx =

∞∑
n=1

4n−1

n3
(

2n
n

) sin2n t.

The substitution x = sinu gives∫ t

0

u2

sinu
du =

∫ t

0

u2 cotu du =

∞∑
n=1

4n−1

n3
(

2n
n

) sin2n t.

Then (2.14) produces

u2 cotu = −2

∞∑
n=0

ζ(2n)

π2n
u2n+1

and integrating the left side yields

(2.28) −
∫ t

0

(
2

∞∑
n=1

ζ(2n)

π2n+1
u2n+1

)
du =

∞∑
n=1

4n−1

n3
(

2n
n

) sin2n t.

The series inside the integral converges uniformly, therefore

(2.29) −2

∞∑
n=0

(
ζ(2n)

π2n+1

∫ t

0

u2n+1 du

)
= −

∞∑
n=0

ζ(2n)

π2n+1(n+ 1)
t2n+2.

Integrate a second time from 0 to t, to produce

−
∞∑
n=1

ζ(2n)

π2n+1(n+ 1)(2n+ 3)
t2n+3.

and with t = π/2 this becomes

(2.30)

∫ π/2

0

∫ t

0

u2 cotu du dt = −π
2

8

∞∑
n=1

ζ(2n)

(n+ 1)(2n+ 3)22n

Next use the notation

(2.31)

∫ π/2

0

sin2n+1 x dx = Wn.

and use Wallis’ formula in the form

(2.32)
1

Wn
=

4n

(2n+ 1)
(

2n
n

)
in the identity

(2.33)

∫ t

0

∞∑
n=1

4n−1

n3
(

2n
n

) sin2n t dt =

∞∑
n=1

4n−1

n3
(

2n
n

)
(2n+ 1)

sin2n+1 t.
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to produce

(2.34)
1

4

∫ π/2

0

∞∑
n=1

sin2n+1 t

n3Wn
dt =

1

4

∞∑
n=1

1

n3
.

Combine (2.34) and (2.30) completes the proof of the theorem. �

A very similar procedure gives a companion result.

Proposition 2.3. The evaluation

(2.35)
π2

4

∞∑
n=0

β(2n+ 1)

(2n+ 1)(2n+ 2)(2n+ 3)
=
πG

2
− 7ζ(3)

8
.

holds.

Proof. Start with

(2.36)

∫ tan t

0

(arctanx)2

x
dx = 2

∫ t

0

u2 csc 2u du,

and use the elementary identity cscx = sec(x− π/2) to write

(2.37) 2

∫ t

0

u2 csc 2u du = 2

∫ t

0

u2 sec
(

2u− π

2

)
du.

Now use Proposition (2.2) to write

(2.38) 2

∫ t

0

u2 sec
(

2u− π

2

)
du =

∫ t

0

∞∑
n=0

4n+1β(2n+ 1)

π2n+1

(
2u− π

2

)2n

u2 du.

Change the order of integration to derive

(2.39)

∫ t

0

(
2u− π

2

)2n

u2du =

(
2t− π

2

)2n

(π − 4t)[Ant
2 +Bntπ + π2]

32(2n+ 1)(2n+ 2)(2n+ 3)

∣∣∣∣t
0

,

where An = (2n+ 1)(2n+ 2), Bn = 2n+ 1. Thus, we have shown
(2.40)∫ tan t

0

(arctanx)2

x
dx =

1

8

∞∑
n=0

4nβ(2n+ 1)
[(

2t− π
2

)2n

(π − 4t)(Ant
2 +Bntπ + π2)

∣∣∣t
0

]
π2n+1(2n+ 1)(2n+ 2)(2n+ 3)

The special value t = π
4 now gives

(2.41)

∫ 1

0

(arctanx)2

x
dx =

π2

4

∞∑
n=0

β(2n+ 1)

(2n+ 1)(2n+ 2)(2n+ 3)
=
πG

2
− 7ζ(3)

8

and the evaluation is complete. �

Note 2.4. An outline of a general approach presented here can be found in [3].
In particular, it is shown that

(2.42)
π

2

∞∑
n=0

β(2k + 1)

(2k + 1)(2k + 2)
= G.

However, the relationship with ζ-values is not presented by these authors.
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3. Juxtaposing the logarithm and sine functions

This section begins with some standard notations for a group of special functions.
For what follows we remind the reader of some standard definitions.

Definition 3.1. The cosine integral for −π < Arg(x) < π is given by

Ci(x) = −
∫ ∞
x

cos t

t
dt = γ + log x−

∫ x

0

1− cos t

t
dt.

Here γ is the Euler-Mascheroni constant. The notation

(3.1) cin(x) =

∫ x

0

1− cos t

t
dt

is used throughout.

The first result uses the notation x = 1− x.

Proposition 3.1. The evaluation∫ 1

0

log x sinx =

∫ 1

0

log x sinx dx = Ci(1)− γ.

holds.

Proof. Start with the uniformly convergent series

(3.2) sinx =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

so that

(3.3) log x sinx =

∞∑
n=0

(−1)n
x2n+1 log x

(2n+ 1)!
,

and the original integral is written as

(3.4)

∞∑
n=0

(−1)n
∫ 1

0

log x

(2n+ 1)!
x2n+1 =

∞∑
n=0

(−1)n

(2n+ 1)!

∫ 1

0

x2n+1 log x dx.

Integration by parts gives

(3.5)

∫ 1

0

x2n+1 log x dx = − 1

4(n+ 1)2
,

and then

(3.6)

∫ 1

0

log x sinx =

∞∑
n=0

(−1)n+1

2(n+ 1)(2(n+ 1))!
=

∞∑
n=1

(−1)n

2n(2n)!
.

The classical expansion

(3.7) cin(x) =

∞∑
n=1

(−1)n−1x2n

2n(2n)!
.
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produces

(3.8)

∫ 1

0

log x sinx dx = cin(1).

The proof is complete. �

Note 3.1. Proceeding as above and using

(3.9) log t sin t =

∫ 1

0

∫ 1

0

cos(tx)

1 + ty
dxdy,

gives

(3.10)

∫ 1

0

log x sinx =

∫ 1

0

∫ 1

0

∫ 1

0

cos(xy)

1 + xz
dxdydz.

This integral is similar to well-known integrals for other special constants such as ζ(3)
and γ. For example,

ζ(3) =

∫ 1

0

∫ 1

0

∫ 1

0

1

1− xyz
dxdydz

as shown in [1]. Other examples include

ζ(2) =

∫ 1

0

∫ 1

0

1

1− xy
dxdy,

ζ(3) = −
∫ 1

0

∫ 1

0

lnxy

1− xy
dxdy,

and

γ = −
∫ 1

0

∫ 1

0

x

(1− xy) lnxy
dxdy;

for details see [9].

The arithmetic character of the value obtained above is discussed next.

Proposition 3.2. The number cin(1) is irrational.

Proof. It has been established that

cin(1) =

∞∑
n=1

(−1)n−1

2n(2n)!
.

The same argument used to show 1/e is irrational mutatis mutandis will work; see [8,
p.2-3]. �

The next result is a reformulation of Proposition 3.2. The authors remain skeptical
of its value toward showing γ is an irrational number.

Corollary 3.1. One of the numbers ci(1) or γ is irrational.

Proof. Since

cin(1) = γ + ci(1)

and since cin(1) is irrational, the proof is complete. �
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The next result is a reciprocity theorem for the function Ci, found to be of interest.
An immediate application to the study of γ.

Proposition 3.3. Let m, n ∈ N be such that m < n. Then

Ci(1)−
∫ m/n

0

lnx sinx dx = Ci
(n−m

n

)
+ ln

( n

n−m

)
cos
(n−m

n

)
Proof. A similar argument as the one presented in the proof Proposition 3.1

gives

(3.11)

∫ b

0

log x sinxdx =

∞∑
n=0

(−1)n

(2n+ 1)!

∫ b

0

x2n+1 log x dx.

An elementary evaluation gives, for b 6 1,

(3.12)

∫ b

0

x2n+1 log x dx =
b
2(n+1)

(1− 2(n+ 1) log b)− 1

4(n+ 1)2
,

and the right-hand side is

(3.13)
b
2(n+1)

4(n+ 1)2
− b log b

2(n+ 1)
− 1

4(n+ 1)2
.

This yields

(3.14)

∞∑
n=1

(−1)n−1b
2n

2n(2n)!
+ log b

∞∑
n=1

(−1)nb
2n

(2n)!
+

∞∑
n=1

(−1)n+1

2n(2n)!
.

Now let b = m/n to complete the proof. �

The next result follows from Proposition 3.3.

Proposition 3.4. The limit

lim
x→∞

[
Ci
( 1

x

)
+ ln(x) cos

( 1

x

)]
= γ,

holds.

Proof. Start with

Ci(x) = γ + log x−
∫ x

0

1− cos t

t
dt,

and restate the result as

lim
x→∞

[
γ + log x cosx−1 + log x−1 −

∫ x−1

0

1− cos t

t
dt
]

= γ.

The expression in brackets is now simplified as[
γ − log x(1− cosx−1)−

∫ x−1

0

1− cos t

t
dt
]
.

The limiting values log x(1 − cosx−1) → 0 and

∫ x−1

0

1− cos t

t
dt → 0 as x → ∞

complete the proof. �
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