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Some Determinant Inequalities for Two Positive Definite
Matrices Via a Result of Cartwright and Field

Silvestru Sever Dragomir!:?

ABSTRACT. In this paper we prove among others that, if the positive definite
matrices A, B satisfy the condition A < B, then

0 <) % [fdet (4] — 2[det (B)] ™" + [det (2B — 4)] ]

_ [det (B)] 7! + [det (A
= 2
If A< B < 2A, then also
[det (B)] ™! + [det (A
2

[[det (24 — B)]~! — 2[det (A)] " + [det (B)]—l] .

)Nt !
- / [det (1 — ¢) B+ tA)] " dt.
0

o /1 [det (1 — ¢) B +tA)] " dt
0
1

<
12

1. Introduction

We have the following inequality that provides a refinement and a reverse for the
celebrated Young’s inequality

2
(1.1) %uu —) Hfzx{z)b} <(-v)a+vb—a"H <
for any a,b > 0 and v € [0,1].

This result was obtained in 1978 by Cartwright and Field [3] who established a
more general result for n variables and gave an application for a probability measure
supported on a finite interval.

A real square matrix A = (a;5), ¢, j = 1,...,n is symmetric provided a;; = a;; for
all 7, j = 1,...,n. A real symmetric matrix is said to be positive definite provided the
quadratic form Q (z) = szzl a;;x;x; is positive for all x = (241, ...,z,) € R” \ {0}
It is well known that a necessary and sufficient condition for the symmetric matrix A
to be positive definite, and we write A > 0, is that all determinants

det(Ay) =det (aij), 4, j=1,....k k=1,...,n

(b—a)’

v(1-v) min {a, b}

1
2
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are positive.
It is know that the following integral representation is valid, see [1, pp. 61-62] or
[12, pp. 211-212]

(12) (A ;:/R exp(— (Az, 2))dz = /_O;.../_o;exp(— (Az, 2))dz

B 7T.n/2
[det (A)]"/?

where A is a positive definite matrix of order n and (-, -) is the usual inner product on
R™.

By utilizing the representation (1.2) and Hoélder’s integral inequality for multiple
integrals one can prove the logarithmic concavity of the determinant that is due to Ky
Fan ([1, p. 63] or [12, p. 212]), namely

(1.3) det (1 — A) A+ AB) > [det (A)]' ™ [det (B)]*

for any positive definite matrices A, B and A € [0, 1].
By mathematical induction we can get a generalization of (1.3) which was obtained
by L. Mirsky in [11], see also [12, p. 212]

(1.4) det Z)\jAj H det (A m > 2,
— i

where \; >0, j = 1,..,m with 377" | \; =land 4; >0, j=1,..,m
If we write (1.4) for A; = B;l we get

—1
S B = I [det (B )Y = | [T ldes (B |
Jj=1 j=1 j=1

which also gives

—1
m

(1.5) [T (det (A1 > det | [ > 247" ,
Jj=1 j=1

where \; >0, j = 1,..,m with 377" | A\; =land A4; >0, j=1,..,m
Using the representation (1.2) one can also prove the result, see [12, p. 212],

(1.6) det (A) = det (A1) < det (Arx) det (Aginyn), k=1,...,n
where the determinant det (A4,) is defined by
det (As) = det (as;),1, j=r,...,5.
In particular,
(1.7) det (A) < a11a22...ann.-
We recall also the Minkowski’s type inequality,
(1.8) [det (A + B)]Y™ > [det (A)]Y" + [det (B)]*/"
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for A, B positive definite matrices of order n. For other determinant inequalities see
Chapter VIII of the classic book [12]. For some recent results see [6]-[10].

Motivated by the above results, in this paper we prove among others that, if the
positive definite matrices A, B satisfy the condition A < B, then

(0<) 1% (et (4)] "~ 2[det (B)] ™" + [det (2B — A)]']
_ [det (B)] ™" + [det (4)]
= 2

1
—/ (det (1 £) B+ £4)] " dt.
0
If A < B < 2A, then also

[det (B)] ™" + [det (4)]
2

- /1 [det (1 —t) B +tA)] " dt
0

< o [[det (24 — B) ™! — 2 [det (4)] 7" + [det (B)] ']

2. Main Results
Our firsr mai result is as follows:

THEOREM 2.1. Let A, B be positive definite matrices and t € [0,1]. If A < B,
then

21)  (0<) %t (1= 1) [[det (4)] 772 = 2 [det (B)] "% + [det (2B — A)]/?]
< (1=1t)[det (B)] 7Y% + t[det (A)] 7"/ = [det (1 — t) B + tA)] /2,
and
(2.2) 0<) %t (1—1) [[det (A)]7Y2 — 2[det (B)] "/ + [det (2B — A)]—l/ﬂ
o et (B))712 4 [det (4)) 7'
= 2
[det (1 — ) B+ tA)] ™% 4 [det (tB + (1 —t) A)] "/

2
If A < B < 2A, then also

(2.3) (1 —t)[det (B)] "%+ t[det (A4)] "/ — [det (1 — ) B + tA)] /2

< %t (1—1) [[det (24 — B) 7Y% — 2[det (A)] Y2 + [det (B)]*W]

and
(2:4) (1 —t)[det (B)] Y% + t[det (4)] /2 — [det (1 — ¢) B + tA)] /2
S %t (1-1) {[det (24— B)] 7% — 2[det (4)]/* + [det (B)]fm} .
PrOOF. If 0 < a < b, then by (1.1)
0<) ;'5(1—t)(b_ba)2 <(—t)atth—a ' < % (1—1) (b_a“)Q?
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namely
1
(2.5) (0<)5t(1-1) (b—2a+a® ') <(1—t)a+tb—a' b

<zt(l—t)(BPa ' —2b+a),

1
2
for all ¢t € [0,1].
Since 0 < A < B, hence exp (— (Bz,x)) < exp (— (Az, z)) for z € R™. If we take
in (2.5)
a = exp (— (Bz,z)) and b = exp (— (Az,x)),
then we get

(2.6) (0<) %t (1—1)
X (exp (— (Az,2)) — 2exp (— (Ba,a)) + exp (— (2B — 4) z,)))
< (1 —t)exp (— (Bzx,z)) + texp (— (Az, x))

—exp(=((1 = 1) B+tA)z,x))

x (exp (= ((24 — B) z,x)) — 2exp (= (Az, z)) + exp (— (Bz, z))),,
for x € R™ and t € [0,1].

Since 2B — A > 0, hence we can take the integral on R" in the first inequality in
(2.6) to get

(2.7) (0<) %t (1-1¢) [/n exp (— (Az,z)) dx — 2/ exp (— (Bz, z)) dz

n

+/n exp (— (2B — A)x,x>)d4
<(1-1) /R exp (— (Bz, ) do +t/Rn exp (- (Az, 2)) dz

— /n exp (—(((1 —t) B+tA)x,x))dx

for t € [0,1].
Using representation (1.2) we get

(2.8) 0<) %t (1= ) [Jn (A) — 2, (B) + Jo (2B — A)]

<A —=t)Jp(B)+tJ, (A) — J, (1 —t) B+tA),

which, by the second equality in (1.2), is equivalent to (2.1).
If we replace ¢t by 1 — ¢ in (2.1), we get

(2.9) (0 <) %t (1—¢) [[det (A)] /2 = 2[det (B)] /% + [det (2B — A)] /2

< t[det (B)] Y2 + (1 —¢) [det (A)] Y% = [det (¢B + (1 — t) A)] /2.
If we add (2.1) with (2.9) and divide by 2, then we get (2.2).
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Now, if B < 2A, then we can also take the integral in the second inequality in
(2.6) to get

(1—t)/" exp (— (Bm,x>)dx+t/ exp (— (Az, z)) dz

n

- / exp (= (1= ) B+ tA)z,2)) da
< %t(lft) (/nexp(<(2AB)ac,:c>)dx
—2/n exp (— (Az, ) dz + / exp (— <Bm,a:>)dx> ,

which gives (2.3). O
COROLLARY 2.1. Let A, B be positive definite matrices. If A < B, then
1 _ _ _
(210)  (0<) 75 [[det (4] —2[det (B)] /2 + [det (2B — 4)] /7]

_ [det (B)]71? + [det (4)) 2
h 2

1

7/ [det (1 —t) B+ tA)] "2 dt.
0

If A < B < 2A, then also

[det (B)] /% + [det (4)] /2
2

1
(2.11) 7/0 [det (1 —t) B+ tA)] 2 dt

1 _ - -
<z [[det (24— B)]™Y? — 2[det (4)] V2 + [det (B)] /%] .
The proof follows by Theorem 2.1 by taking the integral and observing that

1 [t 1
[t —t)dt = —.
2/0 ( ) 12

If we take the square in the representation (1.2), then we get

( / exp(~ (x,Am))dw)Q - de:z o

Since
(/n exp(— <Ax,x>)dx)2 = /n /n exp(— (Az, x)) exp(— (Ay, y))dzdy
= [ [ expl- (Ava) ~ (Ay.y))dudy,
hence
(2.12) K, (A) = / ) / exp(— (Av,w) — (Ay,y)))dody = desz)

for A a positive definite matrix of order n and (-, -) is the usual inner product on R".
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THEOREM 2.2. Let A, B be positive definite matrices and t € [0,1]. If A < B,
then
(2.13) (0<) %t (1~ 1) [[det (A)) ™" — 2[det (B)] " + [det (2B — 4))"]
< (1 —t)[det (B)] " +t[det (A)] " —[det (1 —t) B +tA)] ™",

and
(2.14) (0<) %t (1~ 1) [[det ()] — 2 [det (B)] " + [det (2B — 4)] ]
_ [det (B)]”" + [det (A4)]
= 2
et (1—t)B+tA)] " +[det (tB+ (1 —t) A)]"
5 .
If A< B < 2A, then also
(2.15) (1 —¢) [det (B)] ™" + t[det (A)] " — [det (1 — ) B +tA)] "
< %t (1—1) [[det (24— BY]"" — 2[det (4)] " + [det (B)]’I/Q]
and
(2.16) (1 —t)[det (B)] ™" +t[det (A)] " — [det (1 —¢) B+ tA)] "

< %t (1—1) [[det (24— B)]™" — 2[det (4)] " + [det (B)]—l} .

PROOF. Since0 < A < B, hence exp (— (Bx,x) — (By,y)) < exp (— (Az, z) — (Ay,y))
for z, y € R™. If we take in (2.5)

@ = exp (= (Ba,2) — (By,y)) and b= exp(— {Az,2) — (44, 1),
then we get
(217) (0<) 5¢(1 - ) (exp (— (A, ) — (Ay,))
— 2exp (= (B, z) — (By,y)) + exp (= (2B — A) z,2) — (2B — 4) y,9)))

< (L —t)exp (= (Bx,z) — (By,y)) + texp (= (Az,z) — (Ay,y))
—exp (= ((1=t) B+tA)z,2) — (1 - ) B+tA)y,y))

< 3t (1= 1) (exp ({24 — B),a) — (24— B)y,y)
“2exp (— (Az, ) — (Ay,y)) + exp (— (B, ) — (By, 1)),

for x, y e R and t € [0,1].
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Since 2B — A > 0, hence we can take the double integral on R™ x R™ in the first
inequality in (2.6) to get

09 510-0 ([ [ e ana) = ay.) doay
—2/n/nexp(f (Bz, ) — (By,y)) dedy

+ /n /n exp(—((2B — A)z,z) — ((2B — A) y,y)) dzdy
<(1—1%) /n /n exp (— (Bz,z) — (By,y)) dzdy

”/n / exp (= (Az, z) — (Ay, y)) dzdy

[ [ ew - (@ =0B ) )~ (1= ) B+ t4) ) dod,
)

for t € [0,1].
By utilising the representation (2.12) we get
1
(0<) 5t (1~ 1) [Ko (A) — 26, (B) + K, (2B — A)
<(1-t)K,(B)+tK,(A)—K,(1-t)B+tA),
which is equivalent to (2.13). O

COROLLARY 2.2. Let A, B be positive definite matrices. If A < B, then

(2.18) (0<) 1% [det (A)] ™" — 2[det (B)]™" + [det (2B — A)]—l}
< et (B - det ()] —/1 [det (1 — ) B+ £A)] " dt.

If A < B < 2A, then also

[det (B)] " + [det (A)] "
2

(2.19) - /01 [det (1 —t) B+tA)] " dt

< % et (24— B)] ™" — 2 [det (4)] + [det (B)] ]

3. The Case of Hermitian Matrices

A complex square matrix H = (hy;),4,j = 1, ..., n is said to be Hermitian provided
hij = hj; for all 4, j = 1,...,n. A Hermitian matrix is said to be positive definite if the
Hermitian form P (2) = 327, a;;2Z; is positive for all 2 = (21, ..., z,) € C" ~ {0} .

It is known that, see for instance [12, p. 215], for a positive definite Hermitian
matrix H, we have

(3.1) K (H) = / ) / oxp (-~ (7, Hz) dedy =

7T7L

det (H)’
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where z = x 4 4y and dx and dy denote integration over real n-dimensional space R".
Here the inner product (z,y) is understood in the real sense, i.e. (z,y) = > }_| Tk Y.

On making use of a similar argument to the one in Theorem 2.2 for the representa-

tion K, (-) we can state the same inequalities for positive definite Hermitian matrices

H and K.
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