SCIENTIA

Series A: Mathematical Sciences, Vol. 33 (2023), 21–28 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 0716-8446 © Universidad Técnica Federico Santa María 2023

Some Determinant Inequalities for Two Positive Definite Matrices Via a Result of Cartwright and Field

Silvestru Sever Dragomir^{1,2}

ABSTRACT. In this paper we prove among others that, if the positive definite matrices $A,\,B$ satisfy the condition $A\leqslant B$, then

$$(0 \leqslant) \frac{1}{12} \left[[\det(A)]^{-1} - 2 \left[\det(B) \right]^{-1} + \left[\det(2B - A) \right]^{-1} \right]$$

$$\leqslant \frac{\left[\det(B) \right]^{-1} + \left[\det(A) \right]^{-1}}{2} - \int_{0}^{1} \left[\det\left((1 - t) B + tA \right) \right]^{-1} dt.$$
If $A \leqslant B < 2A$, then also

$$\frac{\left[\det\left(B\right)\right]^{-1} + \left[\det\left(A\right)\right]^{-1}}{2} - \int_{0}^{1} \left[\det\left((1-t)B + tA\right)\right]^{-1} dt$$

$$\leqslant \frac{1}{12} \left[\left[\det\left(2A - B\right)\right]^{-1} - 2\left[\det\left(A\right)\right]^{-1} + \left[\det\left(B\right)\right]^{-1}\right].$$

1. Introduction

We have the following inequality that provides a refinement and a reverse for the celebrated Young's inequality

$$(1.1) \qquad \frac{1}{2}\nu \left(1-\nu\right) \frac{\left(b-a\right)^{2}}{\max\left\{a,b\right\}} \leqslant \left(1-\nu\right) a + \nu b - a^{1-\nu}b^{\nu} \leqslant \frac{1}{2}\nu \left(1-\nu\right) \frac{\left(b-a\right)^{2}}{\min\left\{a,b\right\}}$$

for any a, b > 0 and $\nu \in [0, 1]$.

This result was obtained in 1978 by Cartwright and Field [3] who established a more general result for n variables and gave an application for a probability measure supported on a finite interval.

A real square matrix $A=(a_{ij})$, i, j=1,...,n is symmetric provided $a_{ij}=a_{ji}$ for all i, j=1,...,n. A real symmetric matrix is said to be positive definite provided the quadratic form $Q(x)=\sum_{i,j=1}^n a_{ij}x_ix_j$ is positive for all $x=(x_1,...,x_n)\in\mathbb{R}^n\setminus\{0\}$. It is well known that a necessary and sufficient condition for the symmetric matrix A to be positive definite, and we write A>0, is that all determinants

$$det(A_k) = det(a_{ij}), i, j = 1, ..., k; k = 1, ..., n$$

Key words and phrases. Positive definite matrices, Determinants, Inequalities.

²⁰¹⁰ Mathematics Subject Classification. 47A63, 26D15, 46C05.

are positive.

It is know that the following integral representation is valid, see [1, pp. 61-62] or [12, pp. 211-212]

(1.2)
$$J_n(A) := \int_{\mathbb{R}^n} \exp(-\langle Ax, x \rangle) dx := \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \exp(-\langle Ax, x \rangle) dx$$
$$= \frac{\pi^{n/2}}{\left[\det(A)\right]^{1/2}},$$

where A is a positive definite matrix of order n and $\langle \cdot, \cdot \rangle$ is the usual inner product on \mathbb{R}^n .

By utilizing the representation (1.2) and Hölder's integral inequality for multiple integrals one can prove the *logarithmic concavity* of the determinant that is due to Ky Fan ([1, p. 63] or [12, p. 212]), namely

(1.3)
$$\det\left(\left(1-\lambda\right)A + \lambda B\right) \geqslant \left[\det\left(A\right)\right]^{1-\lambda} \left[\det\left(B\right)\right]^{\lambda}$$

for any positive definite matrices $A,\,B$ and $\lambda\in[0,1]$.

By mathematical induction we can get a generalization of (1.3) which was obtained by L. Mirsky in [11], see also [12, p. 212]

(1.4)
$$\det\left(\sum_{j=1}^{m} \lambda_j A_j\right) \geqslant \prod_{j=1}^{m} \left[\det\left(A_j\right)\right]^{\lambda_j}, \ m \geqslant 2,$$

where $\lambda_j > 0$, j = 1, ..., m with $\sum_{j=1}^m \lambda_j = 1$ and $A_j > 0$, j = 1, ..., m. If we write (1.4) for $A_j = B_j^{-1}$ we get

$$\det\left(\sum_{j=1}^{m} \lambda_j B_j^{-1}\right) \geqslant \prod_{j=1}^{m} \left[\det\left(B_j^{-1}\right)\right]^{\lambda_j} = \left(\prod_{j=1}^{m} \left[\det\left(B_j\right)\right]^{\lambda_j}\right)^{-1},$$

which also gives

(1.5)
$$\prod_{j=1}^{m} \left[\det \left(A_{j} \right) \right]^{\lambda_{j}} \geqslant \det \left[\left(\sum_{j=1}^{m} \lambda_{j} A_{j}^{-1} \right)^{-1} \right],$$

where $\lambda_j > 0, j = 1, ..., m$ with $\sum_{j=1}^{m} \lambda_j = 1$ and $A_j > 0, j = 1, ..., m$.

Using the representation (1.2) one can also prove the result, see [12, p. 212],

$$(1.6) det(A) = det(A_{1n}) \leq det(A_{1k}) det(A_{(k+1)n}), k = 1, ..., n;$$

where the determinant $\det(A_{rs})$ is defined by

$$\det(A_{rs}) = \det(a_{ij}), i, j = r, ..., s.$$

In particular,

$$(1.7) det(A) \leqslant a_{11}a_{22}...a_{nn}.$$

We recall also the Minkowski's type inequality,

$$(1.8) \qquad [\det(A+B)]^{1/n} \geqslant [\det(A)]^{1/n} + [\det(B)]^{1/n}$$

for A, B positive definite matrices of order n. For other determinant inequalities see Chapter VIII of the classic book [12]. For some recent results see [6]-[10].

Motivated by the above results, in this paper we prove among others that, if the positive definite matrices A, B satisfy the condition $A \leq B$, then

$$(0 \leqslant) \frac{1}{12} \left[\left[\det(A) \right]^{-1} - 2 \left[\det(B) \right]^{-1} + \left[\det(2B - A) \right]^{-1} \right]$$

$$\leqslant \frac{\left[\det(B) \right]^{-1} + \left[\det(A) \right]^{-1}}{2} - \int_{0}^{1} \left[\det((1 - t)B + tA) \right]^{-1} dt.$$

If $A \leq B < 2A$, then also

$$\frac{\left[\det\left(B\right)\right]^{-1} + \left[\det\left(A\right)\right]^{-1}}{2} - \int_{0}^{1} \left[\det\left((1-t)B + tA\right)\right]^{-1} dt$$

$$\leq \frac{1}{12} \left[\left[\det\left(2A - B\right)\right]^{-1} - 2\left[\det\left(A\right)\right]^{-1} + \left[\det\left(B\right)\right]^{-1}\right].$$

2. Main Results

Our first mai result is as follows:

Theorem 2.1. Let A, B be positive definite matrices and $t \in [0,1]$. If $A \leq B$, then

(2.1)
$$(0 \le) \frac{1}{2} t (1-t) \left[\left[\det (A) \right]^{-1/2} - 2 \left[\det (B) \right]^{-1/2} + \left[\det (2B-A) \right]^{-1/2} \right]$$

$$\le (1-t) \left[\det (B) \right]^{-1/2} + t \left[\det (A) \right]^{-1/2} - \left[\det ((1-t)B + tA) \right]^{-1/2},$$

and

$$(2.2) (0 \le)\frac{1}{2}t(1-t)\left[\left[\det\left(A\right)\right]^{-1/2} - 2\left[\det\left(B\right)\right]^{-1/2} + \left[\det\left(2B-A\right)\right]^{-1/2}\right]$$

$$\le \frac{\left[\det\left(B\right)\right]^{-1/2} + \left[\det\left(A\right)\right]^{-1/2}}{2}$$

$$- \frac{\left[\det\left((1-t)B + tA\right)\right]^{-1/2} + \left[\det\left(tB + (1-t)A\right)\right]^{-1/2}}{2}.$$

If $A \leq B < 2A$, then also

$$(2.3) \qquad (1-t)\left[\det\left(B\right)\right]^{-1/2} + t\left[\det\left(A\right)\right]^{-1/2} - \left[\det\left((1-t)B + tA\right)\right]^{-1/2}$$

$$\leqslant \frac{1}{2}t\left(1-t\right)\left[\left[\det\left(2A - B\right)\right]^{-1/2} - 2\left[\det\left(A\right)\right]^{-1/2} + \left[\det\left(B\right)\right]^{-1/2}\right]$$

and

$$(2.4) \qquad (1-t) \left[\det(B) \right]^{-1/2} + t \left[\det(A) \right]^{-1/2} - \left[\det((1-t)B + tA) \right]^{-1/2}$$

$$\leq \frac{1}{2} t (1-t) \left[\left[\det(2A - B) \right]^{-1/2} - 2 \left[\det(A) \right]^{-1/2} + \left[\det(B) \right]^{-1/2} \right].$$

PROOF. If 0 < a < b, then by (1.1)

$$(0 \leqslant) \frac{1}{2} t (1-t) \frac{(b-a)^2}{b} \leqslant (1-t) a + tb - a^{1-t} b^t \leqslant \frac{1}{2} t (1-t) \frac{(b-a)^2}{a},$$

namely

$$(2.5) (0 \le) \frac{1}{2} t (1-t) \left(b - 2a + a^2 b^{-1}\right) \le (1-t) a + tb - a^{1-t} b^t$$

$$\le \frac{1}{2} t (1-t) \left(b^2 a^{-1} - 2b + a\right),$$

for all $t \in [0, 1]$.

Since $0 < A \leq B$, hence $\exp(-\langle Bx, x \rangle) \leq \exp(-\langle Ax, x \rangle)$ for $x \in \mathbb{R}^n$. If we take in (2.5)

$$a = \exp(-\langle Bx, x \rangle)$$
 and $b = \exp(-\langle Ax, x \rangle)$,

then we get

$$(2.6) \qquad (0 \leqslant) \frac{1}{2} t (1 - t) \\ \times (\exp(-\langle Ax, x \rangle) - 2 \exp(-\langle Bx, x \rangle) + \exp(-\langle (2B - A)x, x \rangle)) \\ \leqslant (1 - t) \exp(-\langle Bx, x \rangle) + t \exp(-\langle Ax, x \rangle) \\ - \exp(-\langle ((1 - t)B + tA)x, x \rangle) \\ \leqslant \frac{1}{2} t (1 - t) \\ \times (\exp(-\langle (2A - B)x, x \rangle) - 2 \exp(-\langle Ax, x \rangle) + \exp(-\langle Bx, x \rangle)),$$

for $x \in \mathbb{R}^n$ and $t \in [0, 1]$.

Since 2B - A > 0, hence we can take the integral on \mathbb{R}^n in the first inequality in (2.6) to get

$$(2.7) \qquad (0 \leqslant) \frac{1}{2} t (1 - t) \left[\int_{\mathbb{R}^n} \exp\left(-\langle Ax, x \rangle\right) dx - 2 \int_{\mathbb{R}^n} \exp\left(-\langle Bx, x \rangle\right) dx \right]$$

$$+ \int_{\mathbb{R}^n} \exp\left(-\langle (2B - A)x, x \rangle\right) dx$$

$$\leqslant (1 - t) \int_{\mathbb{R}^n} \exp\left(-\langle Bx, x \rangle\right) dx + t \int_{\mathbb{R}^n} \exp\left(-\langle Ax, x \rangle\right) dx$$

$$- \int_{\mathbb{R}^n} \exp\left(-\langle ((1 - t)B + tA)x, x \rangle\right) dx$$

for $t \in [0, 1]$.

Using representation (1.2) we get

(2.8)
$$(0 \leqslant) \frac{1}{2} t (1-t) [J_n(A) - 2J_n(B) + J_n(2B-A)]$$
$$\leqslant (1-t) J_n(B) + t J_n(A) - J_n((1-t)B + tA),$$

which, by the second equality in (1.2), is equivalent to (2.1).

If we replace t by 1 - t in (2.1), we get

(2.9)
$$(0 \le) \frac{1}{2} t (1-t) \left[\left[\det (A) \right]^{-1/2} - 2 \left[\det (B) \right]^{-1/2} + \left[\det (2B-A) \right]^{-1/2} \right]$$

$$\le t \left[\det (B) \right]^{-1/2} + (1-t) \left[\det (A) \right]^{-1/2} - \left[\det (tB + (1-t)A) \right]^{-1/2}.$$

If we add (2.1) with (2.9) and divide by 2, then we get (2.2).

Now, if B < 2A, then we can also take the integral in the second inequality in (2.6) to get

$$(1-t)\int_{\mathbb{R}^{n}} \exp\left(-\langle Bx, x\rangle\right) dx + t \int_{\mathbb{R}^{n}} \exp\left(-\langle Ax, x\rangle\right) dx$$

$$-\int_{\mathbb{R}^{n}} \exp\left(-\langle ((1-t)B + tA)x, x\rangle\right) dx$$

$$\leqslant \frac{1}{2}t (1-t) \left(\int_{\mathbb{R}^{n}} \exp\left(-\langle (2A - B)x, x\rangle\right) dx\right)$$

$$-2\int_{\mathbb{R}^{n}} \exp\left(-\langle Ax, x\rangle\right) dx + \int_{\mathbb{R}^{n}} \exp\left(-\langle Bx, x\rangle\right) dx\right),$$

which gives (2.3).

COROLLARY 2.1. Let A, B be positive definite matrices. If $A \leq B$, then

$$(2.10) (0 \le) \frac{1}{12} \left[\left[\det(A) \right]^{-1/2} - 2 \left[\det(B) \right]^{-1/2} + \left[\det(2B - A) \right]^{-1/2} \right]$$

$$\le \frac{\left[\det(B) \right]^{-1/2} + \left[\det(A) \right]^{-1/2}}{2} - \int_{0}^{1} \left[\det\left((1 - t) B + tA \right) \right]^{-1/2} dt.$$

If $A \leq B < 2A$, then also

(2.11)
$$\frac{\left[\det\left(B\right)\right]^{-1/2} + \left[\det\left(A\right)\right]^{-1/2}}{2} - \int_{0}^{1} \left[\det\left((1-t)B + tA\right)\right]^{-1/2} dt$$

$$\leq \frac{1}{12} \left[\left[\det\left(2A - B\right)\right]^{-1/2} - 2\left[\det\left(A\right)\right]^{-1/2} + \left[\det\left(B\right)\right]^{-1/2}\right].$$

The proof follows by Theorem 2.1 by taking the integral and observing that

$$\frac{1}{2} \int_{0}^{1} t (1 - t) dt = \frac{1}{12}$$

If we take the square in the representation (1.2), then we get

$$\left(\int_{\mathbb{R}^n} \exp(-\langle x, Ax \rangle) dx\right)^2 = \frac{\pi^n}{\det(A)}.$$

Since

$$\left(\int_{\mathbb{R}^n} \exp(-\langle Ax, x \rangle) dx\right)^2 = \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp(-\langle Ax, x \rangle) \exp(-\langle Ay, y \rangle) dx dy$$
$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp(-\langle Ax, x \rangle - \langle Ay, y \rangle)) dx dy,$$

hence

(2.12)
$$K_n(A) := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp(-\langle Ax, x \rangle - \langle Ay, y \rangle)) dx dy = \frac{\pi^n}{\det(A)}$$

for A a positive definite matrix of order n and $\langle \cdot, \cdot \rangle$ is the usual inner product on \mathbb{R}^n .

Theorem 2.2. Let A, B be positive definite matrices and $t \in [0,1]$. If $A \leq B$, then

(2.13)
$$(0 \leqslant) \frac{1}{2} t (1-t) \left[\left[\det(A) \right]^{-1} - 2 \left[\det(B) \right]^{-1} + \left[\det(2B-A) \right]^{-1} \right]$$

$$\leqslant (1-t) \left[\det(B) \right]^{-1} + t \left[\det(A) \right]^{-1} - \left[\det((1-t)B + tA) \right]^{-1},$$

and

$$(2.14) (0 \le) \frac{1}{2}t (1-t) \left[\left[\det(A) \right]^{-1} - 2 \left[\det(B) \right]^{-1} + \left[\det(2B-A) \right]^{-1} \right]$$

$$\le \frac{\left[\det(B) \right]^{-1} + \left[\det(A) \right]^{-1}}{2}$$

$$- \frac{\left[\det((1-t)B + tA) \right]^{-1} + \left[\det(tB + (1-t)A) \right]^{-1}}{2}.$$

If $A \leq B < 2A$, then also

$$(2.15) (1-t) \left[\det(B) \right]^{-1} + t \left[\det(A) \right]^{-1} - \left[\det((1-t)B + tA) \right]^{-1}$$

$$\leq \frac{1}{2} t (1-t) \left[\left[\det(2A - B) \right]^{-1} - 2 \left[\det(A) \right]^{-1} + \left[\det(B) \right]^{-1/2} \right]$$

and

$$(2.16) \qquad (1-t) \left[\det(B) \right]^{-1} + t \left[\det(A) \right]^{-1} - \left[\det((1-t)B + tA) \right]^{-1}$$

$$\leq \frac{1}{2} t (1-t) \left[\left[\det(2A - B) \right]^{-1} - 2 \left[\det(A) \right]^{-1} + \left[\det(B) \right]^{-1} \right].$$

PROOF. Since $0 < A \leq B$, hence $\exp(-\langle Bx, x \rangle - \langle By, y \rangle) \leq \exp(-\langle Ax, x \rangle - \langle Ay, y \rangle)$ for $x, y \in \mathbb{R}^n$. If we take in (2.5)

$$a = \exp(-\langle Bx, x \rangle - \langle By, y \rangle)$$
 and $b = \exp(-\langle Ax, x \rangle - \langle Ay, y \rangle)$,

then we get

$$(2.17) \quad (0 \leqslant) \frac{1}{2} t (1-t) \left(\exp\left(-\langle Ax, x \rangle - \langle Ay, y \rangle\right) \right. \\ \left. - 2 \exp\left(-\langle Bx, x \rangle - \langle By, y \rangle\right) + \exp\left(-\langle (2B-A)x, x \rangle - \langle (2B-A)y, y \rangle\right) \right) \\ \leqslant (1-t) \exp\left(-\langle Bx, x \rangle - \langle By, y \rangle\right) + t \exp\left(-\langle Ax, x \rangle - \langle Ay, y \rangle\right) \\ \left. - \exp\left(-\langle ((1-t)B+tA)x, x \rangle - \langle ((1-t)B+tA)y, y \rangle\right) \right. \\ \leqslant \frac{1}{2} t (1-t) \left(\exp\left(-\langle (2A-B)x, x \rangle - \langle (2A-B)y, y \rangle\right) \right. \\ \left. - 2 \exp\left(-\langle Ax, x \rangle - \langle Ay, y \rangle\right) + \exp\left(-\langle Bx, x \rangle - \langle By, y \rangle\right) \right),$$

for $x, y \in \mathbb{R}^n$ and $t \in [0, 1]$.

Since 2B-A>0, hence we can take the double integral on $\mathbb{R}^n\times\mathbb{R}^n$ in the first inequality in (2.6) to get

$$(0 \leqslant) \frac{1}{2} t (1-t) \left(\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp\left(-\langle Ax, x \rangle - \langle Ay, y \rangle\right) dx dy \right.$$

$$\left. - 2 \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp\left(-\langle Bx, x \rangle - \langle By, y \rangle\right) dx dy \right.$$

$$\left. + \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp\left(-\langle (2B-A)x, x \rangle - \langle (2B-A)y, y \rangle\right) dx dy \right.$$

$$\leqslant (1-t) \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp\left(-\langle Bx, x \rangle - \langle By, y \rangle\right) dx dy$$

$$\left. + t \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp\left(-\langle Ax, x \rangle - \langle Ay, y \rangle\right) dx dy \right.$$

$$\left. - \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp\left(-\langle ((1-t)B+tA)x, x \rangle - \langle ((1-t)B+tA)y, y \rangle\right) dx dy, \right.$$

for $t \in [0, 1]$.

By utilising the representation (2.12) we get

$$(0 \leqslant) \frac{1}{2} t (1 - t) \left[K_n (A) - 2K_n (B) + K_n (2B - A) \right]$$

$$\leqslant (1 - t) K_n (B) + t K_n (A) - K_n ((1 - t) B + t A),$$

which is equivalent to (2.13).

COROLLARY 2.2. Let A, B be positive definite matrices. If $A \leq B$, then

$$(2.18) (0 \leqslant) \frac{1}{12} \left[\left[\det(A) \right]^{-1} - 2 \left[\det(B) \right]^{-1} + \left[\det(2B - A) \right]^{-1} \right]$$

$$\leqslant \frac{\left[\det(B) \right]^{-1} + \left[\det(A) \right]^{-1}}{2} - \int_{0}^{1} \left[\det((1 - t)B + tA) \right]^{-1} dt.$$

If $A \leq B < 2A$, then also

(2.19)
$$\frac{\left[\det(B)\right]^{-1} + \left[\det(A)\right]^{-1}}{2} - \int_{0}^{1} \left[\det\left((1-t)B + tA\right)\right]^{-1} dt$$
$$\leq \frac{1}{12} \left[\left[\det\left(2A - B\right)\right]^{-1} - 2\left[\det(A)\right]^{-1} + \left[\det(B)\right]^{-1}\right].$$

3. The Case of Hermitian Matrices

A complex square matrix $H=(h_{ij})$, i,j=1,...,n is said to be Hermitian provided $h_{ij}=\overline{h_{ji}}$ for all i,j=1,...,n. A Hermitian matrix is said to be positive definite if the Hermitian form $P\left(z\right)=\sum_{i,j=1}^{n}a_{ij}z_{i}\overline{z_{j}}$ is positive for all $z=(z_{1},...,z_{n})\in\mathbb{C}^{n}\smallsetminus\left\{ 0\right\} .$

It is known that, see for instance [12, p. 215], for a positive definite Hermitian matrix H, we have

(3.1)
$$K_n(H) := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \exp\left(-\langle \overline{z}, Hz \rangle\right) dx dy = \frac{\pi^n}{\det(H)},$$

where z = x + iy and dx and dy denote integration over real n-dimensional space \mathbb{R}^n . Here the inner product $\langle x, y \rangle$ is understood in the real sense, i.e. $\langle x, y \rangle = \sum_{k=1}^n x_k y_k$.

On making use of a similar argument to the one in Theorem 2.2 for the representation $K_n(\cdot)$ we can state the same inequalities for positive definite Hermitian matrices H and K.

References

- [1] E. F. Beckenbach and R. Bellman, Inequalities, Berlin-Heidelberg-New York, 1971.
- [2] R. Bhatia, Interpolating the arithmetic–geometric mean inequality and its operator version, Lin. Alq. Appl. 413 (2006) 355–363.
- [3] D. I. Cartwright, M. J. Field, A refinement of the arithmetic mean-geometric mean inequality, Proc. Amer. Math. Soc., 71 (1978), 36-38.
- [4] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrix, J. Math. Anal. Appl. 361 (2010), 262-269.
- [5] F. Kittaneh and Y. Manasrah, Reverse Young and Heinz inequalities for matrices, Lin. Multilin. Alg., 59 (2011), 1031-1037.
- [6] Y. Li, L. Yongtao, Z. Huang Feng and W. Liu, Inequalities regarding partial trace and partial determinant. Math. Inequal. Appl. 23 (2020), no. 2, 477–485.
- [7] M. Lin and G. Sinnamon, Revisiting a sharpened version of Hadamard's determinant inequality. *Linear Algebra Appl.* 606 (2020), 192–200
- [8] J.-T. Liu, Q.-W. Wang and F.-F. Sun, Determinant inequalities for Hadamard product of positive definite matrices. *Math. Inequal. Appl.* 20 (2017), no. 2, 537–542.
- [9] W. Luo, Further extensions of Hartfiel's determinant inequality to multiple matrices. Spec. Matrices 9 (2021), 78–82.
- [10] M. Ito, Estimations of the weighted power mean by the Heron mean and related inequalities for determinants and traces. Math. Inequal. Appl. 22 (2019), no. 3, 949–966.
- [11] L. Mirsky, An inequality for positive definite matricies, Amer. Math. Monthly, 62 (1955), 428-430.
- [12] D. S. Mitrinović, J. E. Pečarić and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Acedemi Publishers, 1993

Received 22 11 2022, revised 16 03 2023

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}$

 URL : http://rgmia.org/dragomir

 2 DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand,, Private Bag 3, Johannesburg 2050, South Africa