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A natural way to write non-Natural numbers

Gurdial Arora, Valerio De Angelis, and Sindhu Unnithan

Abstract. In the early 20th century, continued fractions used to be a regular
ingredient of the school curriculum, but they have now all but disappeared. In

this article we present an elementary treatment based on the Stern-Brocot tree,

with emphasis on the fact that they provide a more natural way to represent
irrational numbers than the usual decimal expansion.

This article tells a story whose plot is easy to summarize: the way we write real
numbers using decimal expansions is not natural. There is instead a natural way to
write them using continued fractions, that was quite popular in the schools about 100
years ago, but unfortunately has now just about disappeared from the curriculum.

A main ingredient we will use in the development of our story is the Stern-Brocot
tree, whose definition we will soon give, but can be briefly described as an elegant and
efficient way to generate all the rational numbers without any repetitions and always
producing fractions in lowest terms.

There are many excellent articles, books and web sites that treat continued frac-
tions, ranging from the elementary to the very advanced [6, 7, 3, 4, 8]. In many such
treatments, the connection between continued fractions and the Stern-Brocot tree is
also discussed, by showing how the digits of a continued fraction expansion have an
interpretation as paths on the tree [1, 11].

In this article, we propose a different point of view: we start with the Stern-Brocot
tree and use it to define continued fractions. We think this approach is elementary and
intuitive, and accessible to anybody with only basic mathematical knowledge. Our
purpose is to outline this alternative treatment, and we will mostly omit the proofs of
the theorems. The results in this article whose proof does not directly follow from the
definitions are well established results that can be found in the references on continued
fractions cited in the bibliography.

As a disclaimer, we do not expect there is any new result in this article, and we
recognize that much of the discussion about what is “natural” and what is not in
the way we represent numbers is rather subjective and should be viewed as personal
opinion.
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1. Numbers and how to write them

Why do we write numbers using ten digits? The answer, of course, is: because
we have ten fingers. In fact the word “digit” is from the Latin “digitus” for finger.
The Hindu-Arabic system used in much of today’s world uses the idea that a digit can
be placed in different slots, or positions, and then its value depends on the position.
When a digit is moved from one slot to the next, its value gets multiplied by a fixed
number b.

Using three slots, and choosing ten for b, one is 1 , ten is 1 one

hundred is 1 . The brilliant idea that the empty slot should be considered a
digit itself led to the invention of zero. But this positional system leaves a question
unanswered: How should we choose b? The choice b = 10 is just because people have
10 fingers. This is not very natural. For example, why not include toes and use b = 20?

Numbers were not created by people. As the German mathematician Leopold
Kronecker said: God made the integers; all else is the work of man. If there are
intelligent beings on another planet who do not have ten fingers, they will not use ten
as a base. Is there a more natural choice for b?

Any number greater than 1 could be used. If we use the smallest possible number,
b = 2, we get the binary system, whose only numerals are 0 and 1, and 2020 written
in binary is 11111100100. Is this a natural way to write Natural numbers?

If we use b = 62, with numerals 0, 1, . . . , 8, 9, a, b, . . . , y, z, A,B, . . . , Y, Z then 2020
becomes vz. Clearly the larger the base, the smaller the number of digits. But what
is the right compromise?

Consider three and fifty-seven, why does 3 have its own numeral and 57 needs to
be made from two numerals? If we use 62 as base then 57 is U . The reality is:

• There is no natural base to write the Natural numbers.
• The only natural way to represent a Natural number would be to give each

its own numeral.
• In other words, the Natural numbers are already natural.

What about a non-Natural real number, such as
11

7
or e? Their decimal expansions

are
11

7
= 1.571428571428571428571428571428571428 . . .

e = 2.71898189845904523536028747135266249775 . . .

A number such as e is not Natural, but it is quite natural, and once again we have
to rely on the ten digits that originate from our ten fingers. But now the story is
different. Continued fractions give us a natural way to represent any real number.
Unfortunately, they are currently out of fashion in our schools.

2. Continued fractions via the Stern-Brocot tree

We first describe how to list all the rational numbers in a simple and efficient way.

Define F -addition: If
a

b
and

c

d
are two rational numbers in lowest terms, we define
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F -addition ⊕ as:
a

b
⊕ c

d
=
a+ c

b+ d
.

Begin with the two fractions
0

1
and

1

0
. These are the generation −1 entries of an

infinite tree, called the Stern-Brocot tree after the German mathematician Moritz
Abraham Stern (1807–1894) and the French clockmaker and amateur mathematician
Achille Brocot (1817–1878). We can think of these fractions as the First and Last of
all numbers, or as the universal ancestors of every other number.

To find generation 0, we perform F -addition:

0

1
⊕ 1

0
=

0 + 1

1 + 0
=

1

1
= 1.

and place the result in the middle

0

1

1

01

1

The number 1 is the root of the Stern-Brocot tree, and it is an ancestor of every
other number except 0.

To find generation 1, we perform F -addition between generation 0 and generation
−1:

0

1
⊕ 1

1
=

0 + 1

1 + 1
=

1

2
,

1

0
⊕ 1

1
=

1 + 1

0 + 1
=

2

1
.

0

1

1

01

11

2

2

1

To find generation 2, we perform F -addition between each entry in generation 1
and its immediate neighbors in a previous generation:

0

1
⊕ 1

2
=

1

3
,

1

2
⊕ 1

1
=

2

3
,

1

1
⊕ 2

1
=

3

2
,

2

1
⊕ 1

0
=

3

1
.

0

1

1

01

11

2

2

11

3

2

3

3

2

3

1

And so on. We also label each edge with L or R, according to if the edge goes left
or right.
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The following list gives some definitions and properties of the Stern-Brocot tree.
See [1, p.115–123] for the proofs.

Properties of the Stern-Brocot tree

(1) Each entry on the tree has a nearest left ancestor and a nearest right ancestor.
For example, 4/7 has left ancestor 1/2 and right ancestor 3/5.

(2) One of them is in the preceding generation (called parent), and one in at least
two earlier generations (called nearest distant ancestor). So 4/7 has 3/5 as
parent and 1/2 as nearest distant ancestor.

(3) Each entry is in lowest terms.

(4) If u =
a

b
is the parent or nearest distant ancestor of

c

d
, then |ad− bc| = 1.

(5) Every positive rational number appears exactly once as an entry on the tree.

We will identify a path on the tree (that is, a sequence of L’s and R’s) with the rational
number that the path leads to. So we will write

13

18
= LR2LRL,

17

5
= R3L2R,

and so on. If x is a rational number, we will denote by x′ its parent on the Stern-
Brocot tree, and by x∗ its nearest distant ancestor. It can be seen from the way we
constructed the tree that the path for x′ is obtained from the path of x by deleting the
last letter, and x∗ is obtained by deleting the last string consisting of the same letter,

plus one more letter. So for example for x =
14

9
= RLRL3 we find x′ = RLRL2 =

11

7

and x∗ = RL =
3

2
. It also follows by construction that x = x′ ⊕ x∗ (for example,

14

9
=

11

7
⊕ 3

2
).

2.1. The continued fraction expansion for rational numbers. Given a
path on the tree, we can summarize it by counting the number of successive blocks of
the same letter. Writing L2 for LL, R3 for RRR, etc, this means listing the exponents.

So for example the path leading to 11/7 is RLRL2, corresponding to exponents
1, 1, 1, 2. If a path begins with L, then we list 0 as the first exponent. So the path
LRL2RL leading to 11/19 corresponds to the sequence of exponents 0, 1, 1, 2, 1, 1.
Equivalently, we assume that the list of exponents is always referring to a string that
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begins with R. It follows that the path corresponding to the sequence of exponents
a0, a1, . . . , am will end with L if m is odd, and with R if m is even.

We are now ready to define the continued fraction expansion of a rational number.

Definition 1. Let a0, a1, . . . , am be the sequence of exponents corresponding to
the path on the Stern-Brocot tree leading to the rational number x. We say that
a0, a1, . . . , am−1, am + 1 is the continued fraction expansion of x, and we write

x = [a0; a1, . . . , am−1, am + 1].

So according to our definition the last digit of a continued fraction expansion is
always at least 2. But it is convenient to extend our notation, and we define

[a0, ; a1, a2, . . . , am, 1] = [a0; a1, a2, . . . , am + 1]

The reason for the terminology is now found in the following theorem.

Theorem 1. Let a0 be a non-negative integer, and a1, . . . , am positive integers.
Then

[a0; a1, a2, . . . , am] = a0 +
1

[a1; a2, . . . , am]
.

It follows from the theorem that

[a0] = a0, [a0; a1] = a0 +
1

a1
, [a0; a1, a2] = a0 +

1

a1 +
1

a2

and so on. The identity
1

a+
1

1

=
1

a+ 1
corresponds to [0; a, 1] = [0; a + 1] and

explains our extension of the notation. But for the purpose of this article, the continued
fraction expansion of a (non-integer) rational number is the unique sequence of integers
[a0, a1, . . . , am] derived from the path on the Stern-Brocot tree and that terminates
with an integer am > 2.

Example 1.

• 13

18
= LR2LRL = [0; 1, 2, 1, 1, 2] =

1

1 +
1

2 +
1

1 +
1

1 +
1

2

• 17

5
= R3L2R = [3; 2, 2] = 3 +

1

2 +
1

2

Our definition of continued fractions is useful to visualize the connection with
the Stern-Brocot tree. But it is not practical for computations when numerator or
denominator are even moderately large, and we will soon describe a more efficient
procedure (for an online Stern-Brocot calculator, see for example [11]).

The continued fraction expansion is similar to the representation of a rational
number as a decimal, but with one difference: there is no arbitrary choice of a base.
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Every integer may be used in the continued fraction expansion of a rational number.
This will be especially significant later in our discussion of irrational numbers. Even
if we adopt the “natural” point of view that each integer should have its own symbol,
the representation of an irrational number as a ratio of symbols is no longer possible,
so we are forced to arbitrarily choose a base such as 10 for the expansion. But with
continued fractions we do not have to make any such arbitrary choice.

We now re-visit some basic results in elementary number theory.

3. Euclidean division

Given two integers a > b > 0, there are unique integers q and r such that a = qb+r
and 0 6 r < b. In fact,

q =
⌊a
b

⌋
, r = b

{a
b

}
,

where b·c and {·} are the greatest integer and fractional part functions. One aspect of
this important result is that it tells us how to decompose a rational number into the
sum of an integer and a rational number strictly less than 1. We now re-visit it from
the point of view of continued fractions.

3.1. From rationals to integers via continued fractions. Suppose we are
given the continued fraction expansion (or equivalently its path on the Stern-Brocot
tree) of a rational number. So the natural question is: how do we recover numerator
and denominator (in lowest terms)? The answer is given by the following theorem.

Theorem 2. Let x = [a0; a1, a2, . . . , am] be a rational number. Then the repre-

sentation x =
a

b
as a fraction in lowest terms is given by

b =

√∣∣∣∣ x∗ − x′
(x∗ − x)(x− x′)

∣∣∣∣, a = xb,

and moreover

bxc = a0, {x} = [0; a1, a2, . . . , am].

Example 2. If x = [2; 3] = RRLL = 7/3, then x′ = RRL = 5/2, x∗ = R = 2
and √∣∣∣∣ x∗ − x′

(x∗ − x)(x− x′)

∣∣∣∣ =

√
1/2

(1/3)(1/6)
= 3.

But the previous theorem is of no computational interest unless we know how to
do arithmetic operations with continued fractions. In other words, how should we
compute x∗ − x other than by converting both to quotients of integers? The problem
of doing arithmetic with continued fractions was discussed by Gosper [5], but the topic
is not simple and outside the scope of this article.

One drawback of the representation of a rational number as the ratio of two
integers a/b is that it does not easily allow the computation of approximations. The
decimal expansion is of course useful in that respect, but it has the drawback of having
to use an arbitrary choice for the base. On the other hand, the continued fraction
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expansion [a0; a1, a2, . . . , am] makes no use of arbitrary choices, and truncating the
sequence of digits provides very good approximations (as will be discussed later).

3.2. Euclidean algorithm for relatively prime integers. We recall a funda-
mental result [1, p.103–104, 303–304]

Theorem 3. Let a and b be relatively prime, positive integers. Then there are
integers x and y such that ax+ by = 1.

Remark 1. The integers x and y in the previous theorem are far from unique, as
can be seen by replacing x with x− kb and y with y + ka for any integer k. But there

is a unique pair (x, y) of such integers that minimizes the distance
√
x2 + y2 from the

origin.

We now describe the classical Euclidean algorithm that produces the integers x, y
of minimal distance from the origin. Start with two relatively prime integers a > b > 0.
Define

r−1 = a, r0 = b, a0 = br−1/r0c, r1 = r−1 − a0r0.

If a0, a1, . . . , ai−1, r−1, r0, . . . , ri have been defined and ri > 0, define

ai = bri−1/ric, ri+1 = ri−1 − airi.
The sequence ri is strictly decreasing, so let m be the last index i for which ri > 0.
Define sequences sj , tj by

sm−2 = 1, tm−1 = −am−1

sj−2 = tj , tj−1 = sj−1 − aj−1tj , m > j > 1.

Theorem 4.

(1) rm = gcd(a, b) = 1.

(2)
a

b
= [a0; a1, a2, . . . , am]

(3) s−1 and t0 are the integers of minimal distance from the origin such that
as−1 + bt0 = 1.

The Euclidean algorithm provides a recursive procedure to find the linear com-
bination ax + by = 1. We will now look at the same problem from the continued
fractions point of view [6, Ch1], [4].

3.3. The nearest distant ancestor’s role. Let x = [a0; a1, a2, . . . , am] be a
rational number. Recall that by definition we assume am > 2. It follows directly from
the definition of parent and nearest distant ancestor that

x′ = [a0; a1, a2, . . . , am − 1], x∗ = [a0; a1, a2, . . . , am−1].

Theorem 5. Define sequences pi, qi recursively as

p0 = a0, q0 = 1
p1 = a0a1 + 1, q1 = a1

pi = aipi−1 + pi−2, qi = aiqi−1 + qi−2

Then

x =
pm
qm

, x∗ =
pm−1

qm−1
, x′ =

pm − pm−1

qm − qm−1
,
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and (pm−1, qm−1) is the unique pair of positive integers at minimal distance from the
origin such that

qmpm−1 − pmqm−1 = (−1)m.

So the previous theorem tells us that the nearest distant ancestor of a rational
number a/b on the Stern-Brocot tree provides the linear combination ax + by = 1 of
minimal size.

Example 3. Let x = RLRL2R2 = [1; 1, 1, 2, 3] =
27

17
. Then x∗ = RLRL =

[1; 1, 1, 2] =
8

5
and (17)(8)− (27)(5) = 1

It follows from the last theorem that truncating a continued fraction expansion
gives a good approximation:

|[a0; a1, . . . , am]− [a0; a1, . . . , am−1]| =
∣∣∣∣pmqm − pm−1

qm−1

∣∣∣∣ =
1

qmqm−1
.

4. Infinite paths

We now consider infinite paths on the tree. See [9, Ch 10] for a thorough discussion
of this material. Denote by L∞ the infinite string LLLL . . ., and similarly for R∞.

4.1. Properties of infinite paths.

(1) Every positive, rational number is also represented by two infinite paths,
obtained by attaching the strings RL∞ and LR∞ to the finite path. So for
example,

11

7
= RLRL2 = RLRL3R∞ = RLRL2RL∞

(2) Every positive, irrational number is represented by a unique infinite path
that does not terminate with L∞ or R∞.

(3) An infinite path on the tree that does not terminate in L∞ or R∞ gives
rise to an infinite continued fraction [a0; a1, a2, . . .] obtained by counting the
number of repeated letters, as for the finite case.

(4) Given an infinite continued fraction [a0; a1, a2, . . .], let pm/qm be the rational
number corresponding to the truncated continued fraction [a0; a1, . . . , am],
and obtained through the recursive procedure described in the previous sec-
tion. Then the sequence pm/qm converges to the irrational number repre-
sented by [a0; a1, a2 . . .].

The approximation of irrational numbers by their truncated continued fraction
can be shown to be very efficient. We will give an example in the next section.

4.2. From numbers to continued fractions. In this section we show how to
construct the continued fraction expansion of a real number by using the floor and
reciprocal operations.
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The process is best illustrated by example. First we use a rational number:

30

13
= 2.3 · · · = 2 + 0.3 · · · = 2 +

1

3.25
= 2 +

1

3 + 0.25 · · ·
= 2 +

1

3 +
1

4

So
30

13
= [2; 3, 4].

For an irrational number the process is the same, but it does not terminate:

π = 3.141592653 . . . = 3 + 0.141592653 . . . = 3 +
1

7.06251 . . .

= 3 +
1

7 + 0.06251 . . .
= 3 +

1

7 +
1

15.9966 . . .

= 3 +
1

7 +
1

15 + 0.9966 . . .

.

Continuing this way, we find

π = [3; 7, 15, 1, 292 . . .]

We now compute the truncated approximations for the continued fraction expansion
of π.

[3; 7] =
22

7
= 3.14 . . . [3; 7, 15] =

333

106
= 3.1415 . . .

[3; 7, 15, 1] =
355

113
= 3.141592 . . . [3; 7, 15, 1, 292] =

103993

33102
= 3.141592653 . . .

Note that the last fraction with a denominator of only 5 digits gives an approximation
whose first 10 decimal digits are accurate.

The recursive procedure illustrated in the examples above is easily defined using
the floor and reciprocal functions. We let

a0 = bxc, t1 = x− a0

ai = b1/tic, ti+1 =
1

ti
− ai, i > 1.

5. Comparing decimal vs. continued fractions expansions

• The decimal expansion of a rational number either terminates, or it is peri-
odic. The continued fraction expansion of a rational number always termi-
nates.

• The decimal expansion of any irrational number is infinite and non-periodic.
The continued fraction expansion of quadratic irrational numbers (that is,
numbers that are solutions of a quadratic polynomial with integer coeffi-
cients) is periodic.

• The continued fraction expansion of e and some other irrational numbers
constructed from e have easily discernible patterns.
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Some examples are given below.

Decimal Continued Fractions

11

7
1.571428571428 . . . [1; 1, 1, 3]

√
2 1.414213562373 . . . [1; 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . .]

√
3 1.732050807568 . . . [1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, . . .]

1 +
√

5

2
1.618033988749 . . . [1; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .]

e 2.718981898459 . . . [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, . . .]

tanh(1) =
e− e−1

e+ e−1
0.761594155955 . . . [0; 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, . . .]

tanh

(
1

2

)
=
e− 1

e+ 1
0.462117157260 . . . [0; 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, . . .]

It should be evident from the previous table that while the decimal expansion is
almost always a seemingly random sequence of digits, the continued fraction expansion
often has a clearly discernible pattern.

We conclude by suggesting a problem for the reader. As mentioned earlier, the
problem of doing direct arithmetic with continued fractions does not seem to have a
simple solution. But we can experiment with the simplest case: given two continued
fractions with just two digits each: x = [a0; a1], y = [b0; b1], what is the continued
fraction expansion of x+ y?
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