
SCIENTIA
Series A: Mathematical Sciences, Vol. 30 (2020), 91–102
Universidad Técnica Federico Santa Maŕıa
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The valuation tree for n2 + 7

Olena Kozhushkina, Maila Brucal Hallare, Jane Long, Victor H. Moll,
Jean-Claude Pedjeu, Bianca Thompson, and Justin Trulen

Abstract. The 2-adic valuation of an integer x is the highest power of 2 which

divides x. It is denoted by ν2(x). The goal of the present work is to describe the
sequence {ν2(n2 + a)} for 1 6 a 6 7. The first six cases are elementary. The last

case considered here, namely a = 7, presents distinct challenges. It is shown here

how to represent this family of valuations in the form of an infinite binary tree,
with two symmetric infinite branches.

1. Introduction

For a prime p and an integer x, the p-adic valuation νp(x) is the highest power
of p which divides x. The problems considered here deal with p-adic valuations of
sequences generated by a polynomial. In detail, we consider the sequence

(1.1) Vp(f) = {νp(f(n)) : n ∈ N}
for a polynomial f with integer coefficients. An important ingredient in the analysis
of Vp(f) is the ring of p-adic integers Zp. One description of this is ring is via series:

(1.2) x ∈ Zp if and only if x =

∞∑
k=k0

ckp
k

where k0 > 0 and 0 6 ck 6 p − 1 are integers. The series is convergent in the p-adic
norm

(1.3) |x|p = p−k0

and x ∈ Zp is invertible in Zp if and only if |x|p = 1; that is, k0 = 0.

The next result appears in [?].

Theorem 1.1. Let p be a prime and f ∈ Z[x] be a polynomial, irreducible over
Z. Then Vp(f) is either periodic or unbounded. Moreover, Vp(f) is periodic if and
only if f has no zeros in Zp. In the periodic case, the minimal periodic length is a
power of p.
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2. Some elementary examples

This section contains the description of {ν2(n2 + a)} for some small values of a,
where the analysis is elementary.

Proposition 2.1. The 2-adic valuation of n2 + 1 is given by

(2.1) ν2(n2 + 1) =

{
0 if n ≡ 0 mod 2

1 if n ≡ 1 mod 2.

Proof. If n is even, then n2 +1 is odd and so ν2(n2 +1) = 0. On the other hand,
if n is odd, say n = 2m+ 1, then n2 + 1 = 2(2[m2 +m] + 1). Therefore n2 + 1 is twice
an odd number and so ν2(n2 + 1) = 1. �

root

0 1

0 1

Figure 1. The complete tree for ν2(n2 + 1)

Figure 1 contains a tree representation of the set of valuations {ν2(n2 + 1)}.
The process creates a collections of levels, formed by vertices with a set of indices
associated to them, denoted by I(v).

A vertex v is split to a next level below if the set of values {ν2(n2 +1)}, for indices
n ∈ I(v), does not reduce to a singleton; that is, there are indices n1, n2 ∈ I(v), such
that ν2(n2

1 +1) 6= ν2(n2
2 +1). In the case a vertex splits, then the two new descendants

are at one level higher and if I(v) has the form {n ≡ j mod 2a}, then the index sets of
the descendants are {n ≡ j mod 2a+1} (for the left-one) and {n ≡ j + 2a mod 2a+1}
(for the right-one). A vertex which does not split is called terminal. Starting with
the root of the tree, all the vertices that split from the kth level form the (k + 1)st

level.
The process begins with the root v0 with I(v0) = N. The data ν2(12 + 1) = 1 and

ν2(22+1) = 0, shows that v0 splits. The vertices at the second level are {n ≡ 0 mod 2}
(for the left-one) and {n ≡ 1 mod 2} (for the right-one). Now consider the vertex
v1 with I(v1) = {n ≡ 0 mod 2} and v2 with I(v2) = {n ≡ 1 mod 2}. For each
n ∈ I(v1), n2 + 1 = (2m)2 + 1 ≡ 1 mod 2 and {ν2(n2 + 1)} reduces to {0}, showing
that v1 is a terminal vertex, with assigned value 0. Similarly, for the vertex v2, with
I(v2) = {n ≡ 1 mod 2}, one sees directly that {ν2(n2 + 1)} ≡ {1}, showing that v2 is
also terminal, with assigned value 1. Therefore, the set of valuations {ν2(n2 + 1)} is
represented by a finite tree, containing two levels.

Proposition 2.2. The 2-adic valuation of n2 + 2 is given by

(2.2) ν2(n2 + 2) =

{
1 if n ≡ 0 mod 2

0 if n ≡ 1 mod 2.
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Proof. If n is odd, then n2 +2 is also odd and then ν2(n2 +2) = 0. On the other
hand, if n is even, say n = 2m, then n2 + 2 = 2(2m2 + 1), twice an odd number and
it follows that ν2(n2 + 2) = 1. �

root

1 0

0 1

Figure 2. The complete tree for ν2(n2 + 2)

Proposition 2.3. The 2-adic valuation of n2 + 3 is given by

(2.3) ν2(n2 + 3) =

{
0 if n ≡ 0 mod 2

2 if n ≡ 1 mod 2.

Proof. For n even, n2 + 3 is odd, so ν2(n2 + 3) = 0. On the other hand, if
n = 2m+ 1, then n2 + 3 = 4 ([m(m+ 1)] + 1) and this is 4 times an odd number. �

root

0 2

0 1

Figure 3. The complete tree for ν2(n2 + 3)

The next result gives the valuations of n2 + 4. The proof is similar to the one
given in the previous examples, so it is omitted.

Proposition 2.4. The 2-adic valuation of n2 + 4 is given by

(2.4) ν2(n2 + 4) =


0 if n ≡ 1 mod 2

2 if n ≡ 0 mod 4

3 if n ≡ 2 mod 4.

In the tree, the presence of a vertex v inside a square and without a numerical
label, as in the second level of Figure 5, indicates that the valuation of n2 + 4 for
indices n in I(v) is not constant, and so the vertex must be split to the next level.

The reader is invited to draw trees for the sequences {ν2(n2 +5)} and {ν2(n2 +6)}.
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root

∗ 0

0 1

Figure 4. The first level for the tree of ν2(n2 + 4)

root

∗

2 3

0

0 1

0 1

Figure 5. The complete tree for ν2(n2 + 4)

3. The labeling of the classes

Given a polynomial f(x) with integer coefficients, the sequence {ν2(f(n)) : n ∈ N}
has been described via a tree. This is called the valuation tree attached to f . The
vertices correspond to some selected classes

(3.1) Cm,j = {2mi+ j : i ∈ N} ,
starting with the root vertex v0 for C0,0 = N. The procedure to select the classes is
explained below in the example f(x) = x2 + 16. Some notation for the vertices of the
tree is introduced next.

Definition 3.1. A residue class Cm,j is called terminal for the tree attached to
f , if the valuation ν2 (f(2mi+ j)) is independent of the index i ∈ N. Otherwise it is
called non-terminal. The same terminology is given to vertices. In the tree, terminal
vertices are marked by their constant valuation and non-terminal vertices are marked
with a star.

Example 3.2. The construction of the tree for ν2(n2 + 16) starts with the fact
that ν2(12 + 16) = 0 and ν2(22 + 16) = 2 6= 0, showing that the root node v0 is
non-terminal. This node is split into two vertices that form the first level. These
correspond to C1,0 = {2i : i ∈ N} and C1,1 = {2i+ 1 : i ∈ N}. For the class C1,0, the
valuation

ν2((2i)2 + 16) = 2 + ν2(i2 + 4)

depends on i, so C1,0 is non-terminal. For the class C1,1,

ν2((2i+ 1)2 + 16) = ν2(4i2 + 4i+ 17) = 0,
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showing that C1,1 is a terminal class with valuation 0. Figure 6 shows the root and
the first level of the tree associated to ν2(n2 + 16).

v0

∗ 0

0 1

Figure 6. The root and the first level of the tree for ν2(n2 + 16)

The class C1,0 is now split into C2,0 = {4i : i ∈ N} and C2,2 = {4i + 2 : i ∈ N}.
These two classes form the second level. For C2,0, the valuation

ν2((4i)2 + 16) = 4 + ν2(i2 + 1)

shows that this class is non-terminal. In the class C2,2,

ν2((4i+ 2)2 + 16) = ν2(16i2 + 16i+ 20) = 2 + ν2(4i2 + 4i+ 5) = 2.

Therefore C2,2 is a terminal class with valuation 2.

v0

∗

∗ 2

0

0 1

0 1

Figure 7. Two levels of the tree for ν2(n2 + 16)

The third level contains the two classes C3,0 and C3,4 descending from C2,0. The
first class is terminal with valuation 4, since

ν2((8i)2 + 16) = 4 + ν2(4i2 + 1) = 4.

The second class is also terminal, with valuation 5, since

ν2((8i+ 4)2 + 16) = ν2(64i2 + 64i+ 32) = 5 + ν2(2i2 + 2i+ 1) = 5.

Therefore, every class in the third level is terminal and the tree is complete.
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v0

∗

∗

4 5

2

0

0 1

0 1

0 1

Figure 8. The complete tree for ν2(n2 + 16)

4. The 2-adic tree valuation of n2 + 7

It is apriori surprising that the valuations of ν2(n2 + 7) present a more erratic
behavior than the cases considered before. The goal of this section is to describe the
set {ν2(n2 + 7)} via its valuation tree.

Construction of the tree. The values ν2(12 + 7) = 3 6= ν2(22 + 7) = 0, show that
the root vertex v0 has to be split into two classes to form the first level:

(4.1) C1,0 = {2n : n ∈ N} and C1,1 = {2n+ 1 : n ∈ N}.

It is easy to check that the class C1,0 is terminal since ν2((2n)2 + 7) = 0. Figure 9
shows the root vertex and the first level of the tree for ν2(n2 + 7).

v0

0 ∗

0 1

Figure 9. The root and the first level of the tree for ν2(n2 + 7)

Lemma 4.1. Assume n ≡ 1 mod 2, so that n ∈ C1,1, then ν2(n2 + 7) > 3.

Proof. Write n = 2n1 + 1, then n2 + 7 = 4(n2
1 + n1 + 2) = 8

(
n1(n1+1)

2 + 1
)

.

This gives the result since n1(n1 + 1) is even. �

The class C1,1 is non-terminal, since 1, 3 ∈ C1,1 and ν2(12+7) = 3 6= ν2(32+7) = 4.
Therefore the vertex corresponding to C1,1 is split into the classes C2,1 and C2,3, to
form the third level. Recall that C2,1 = {4n + 1} and C2,3 = {4n + 3}. Neither of
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these vertices is terminal. For instance, every number in C2,1 has valuation at least 3
and

(4.2) (4n+ 1)2 + 7 = 16n2 + 8n+ 8 ≡ 0 mod 24

provided n is odd. A similar argument shows that C2,3 is not terminal. The rest of
this section is devoted to the proof of the next result. A similar discussion has been
presented in [?].

Theorem 4.2. Let v be a non-terminating node at the k-th level for the valuation
tree of ν2(n2 + 7). Then v splits into two vertices at the (k + 1)-level. Exactly one
of them terminates, say with constant valuation νk. The second one has valuation at
least νk + 1.

Proof. Start with the class C1,1 = {2n + 1}. As described above, this is non-
terminal vertex, splitting into the classes C2,1 = {4n + 1} and C2,3 = {4n + 3}. The
class C2,1 is non-terminal since 1, 5 ∈ C2,1 and ν2(1) = 3 and ν2(5) = 5. Similarly
3, 7 ∈ C2,3 and ν2(3) = 4 and ν2(7) = 3. Figure 10 shows the tree up to the first four
levels.

v0

0 ∗

∗

3 ∗

∗

∗ 3

0 1

0 1

0 1 0 1

Figure 10. First four levels of the tree for ν2(n2 + 7)

The vertex C2,1 now splits into C3,1 = {8n + 1} and C3,5 = {8n + 5}. For the
class C3,1 observe that

(4.3) ν2((8n+ 1)2 + 7) = ν2(8[(8n2 + 2n) + 1]) = ν2(8) + ν2((8n2 + 2n) + 1) = 3.

This is shown in the left-most branch in the figure. Therefore C3,1 is a terminal class.
For the other one, C2,3, it is easily seen that it splits into C3,3 and C3,7. The class
C3,7 is terminal, with value 3, as shown on the right-most branch and the class C3,3

is not, so it continues.
At this point, the part of the tree that has not been described yet, splits into two

branches:

(4.4) B1 = {8n+ 3} and B2 = {8n+ 5}.
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In view of an apparent symmetry, only the case B1 is discussed in detail. Note 4.4
presents information on this symmetry.

4.1. The 2-valuation of (8n+3)2+7. The class C3,3 = {8n+3} has valuation at
least 3. Now observe first that this class is not terminal because ν2((8×1+3)2 +7) = 7
and ν2((8×2+3)2+7) = 4. At the next level, the classes have the form {8(2n+j)+3},
where j = 0 or 1. Now

(4.5) [8(2n+ j) + 3]
2

+ 7 = 24
[
2{2(2n+ j)2 + 3n}+ 3j + 1

]
,

shows that ν2

(
[8(2n+ j) + 3]

2
+ 7
)
> 4 for any n ∈ N and any j ∈ {0, 1}. Moreover,

(4.6) [8(2n+ j) + 3]
2

+ 7 ≡ 24(3j + 1) mod 25.

In particular, when j = 0, it follows that [8(2n+ j) + 3]
2

+ 7 ≡ 24 6≡ 0 mod 25. This

proves that, for j = 0, one has ν2

(
[8(2n+ j) + 3]

2
+ 7
)

= 4, independent of n. On the

other hand, for j = 1, the congruence (4.6) shows that ν2

(
[8(2n+ j) + 3]

2
+ 7
)
> 5.

> 3

≡ 4 > 5

0 1

Figure 11. The root and the fourth level of the tree for ν2(n2 + 7)

The main step of the proof is given next.

Proposition 4.3. Assume Cα,β = {2αn + β} is a non-terminal class at level α,
where the valuation is > α+1. Then, at the next level, this class splits into two classes

(4.7) Cα+1,β = {2α(2n+ 0) + β} and Cα+1,2α+β = {2α(2n+ 1) + β}

one of which is terminal with valuation ≡ α+1 and the second one is non-terminating
with valuation > α+ 2.

Proof. The starting point is the class C4,11 = {24n+11}. It has been established
that

(4.8) ν2((16n+ 11)2 + 7) > 5.

Indeed, (16n+ 11)2 + 7 = 25(8n2 + 11n+ 4), so (4.8) holds. Moreover, for n odd, the
valuation is ≡ 5 and for n even, this valuation is > 6. This shows the class C4,11 splits
into two classes with the stated properties. The conclusion of the proposition is valid
at the initial step.

Now take a non-terminal class Cα,β with valuation > α+ 1; that is,

(4.9) ν2

(
(2αn+ β)2 + 7

)
> α+ 1.
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Observe that this implies (2αn + β)2 + 7 ≡ 0 mod 2α+1. In particular, this implies
β2 + 7 ≡ 0 mod 2α+1 and so β is odd. Write β2 + 7 = 2α+1γ.

This class splits into the two classes

(4.10) Cα+1,2αj+β = {2α(2n+ j) + β : n ∈ N} .
Now

[2α(2n+ j) + β]
2

+ 7 ≡ 2α+1βj + β2 + 7 mod 2α+2

≡ 2α+1(βj + γ) mod 2α+2.

Since β is odd, the congruence βj + γ ≡ 1 mod 2 has a unique solution (either 0 or 1)
in the variable j. For that value of j,

[2α(2n+ j) + β]
2

+ 7 6≡ 0 mod 2α+2

and this proves ν2 [2α(2n+ j) + β]
2

+ 7] = α + 1, independent of n. For the other
value of j,

[2α(2n+ j) + β]
2

+ 7 ≡ 0 mod 2α+2

and this proves ν2 [2α(2n+ j) + β]
2

+ 7] > α + 2, independent of n. This concludes
the proof. �

The proof of Theorem 4.2 is complete.

Note 4.4. It remains to verify the symmetry of the branches

(4.11) B1 = {8n+ 3} and B2 = {8n+ 5}.
An informal description is presented here.

Every index in the branch B1 has the form 8n+ 3. Then

(4.12) (8n+ 3)2 + 7 = 24(4n2 + 3n+ 1)

shows that ν2((8n+3)2+7) > 4. To move to the next level in the tree, write n = 2m+j,
with m ∈ N and j ∈ {0, 1}. Then

(4.13) (8n+ 3)2 + 7 = [8(2m+ j) + 3]
2

+ 7 ≡ 24(3j + 1) mod 25.

Therefore, for j = 0, then (8n + 3)2 + 7 6≡ 0 mod 25 and thus its valuation is always
4, independently of n. This is the terminal vertex. On the other hand, for j = 1, it
follows that (8n+ 3)2 + 7 ≡ 0 mod 25 and its valuation is at least 5. The identity

(4.14)
(

[8(2m+ j) + 3]
2

+ 7
)
−
(

[8(2m+ 1− j) + 5]
2

+ 7
)

= 25(8j − 5)(2m+ 1)

proves that

(4.15) [8(2m+ j) + 3]
2

+ 7 ≡ [8(2m+ 1− j) + 5]
2

+ 7 mod 25.

Therefore the roles of 0, 1 for the index j in the branch B1 are interchanged in the
branch B2. This phenomena persists at all levels: if there is a movement to the left, in
the branch B1 to advance to the next level; then there is a movement to the right on
B2. This produces the symmetry of the two branches mentioned above. Some details
are given below.

The equation
x2 + 7 ≡ 0 mod 2k
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has exactly 4 non-congruent solutions in the set {1, 2, . . . , 2k − 1} for k > 3. If rk1
and rk2 are the solutions yielding odd multiples of 2k, then the four non-congruent
solutions to x2 +7 ≡ 0 mod 2k+1 are rk1±2k−1 and rk2±2k−1. Exactly two yield odd
multiples of 2k+1 and two yield even multiples. We compute the valuation for one of
the odd multiples (call it rk) :

ν2((2kt± rk)2 + 7) =

{
k if c odd
> k + 1 if c even

and

ν2((2kt± (rk + 2k−1))2 + 7) =

{
k if c even
> k + 1 if c odd

since rk must be odd.
Recalling the proposed form of the four branches

2kt+ rk mod 2k,
2kt+ rk + 2k−1 mod 2k,
2kt+ 2k − rk mod 2k,
2kt+ 2k − (rk + 2k−1) mod 2k,

it follows that either:

(1) The branches 2kt± rk terminate with valuation equal to k and the branches
2kt + rk + 2k−1 and 2kt + 2k − (rk + 2k−1) continue with valuation greater
than or equal to k + 1, or

(2) The branches 2kt± rk continue with valuation greater than or equal to k+ 1
and the branches 2kt+ rk + 2k−1 and 2kt+ 2k − (rk + 2k−1) terminate with
valuation equal to k.

This fact explains the symmetry in the 2-adic valuation tree of x2 + 7, since the
2kt ± rk branches lie on the outside (far left and far right) of each level and the
2kt± (rk + 2k−1) branches lie on the inside.

5. The range of the valuation ν2(n2 + 7)

The proof of Theorem 4.2 shows that, given k > 4, there is a class such that
ν2(n2 + 7) = k for all indices n in the class. As a matter of fact, these classes appear
one by level. This gives the main part of the next statement.

Theorem 5.1. The range of ν2(n2 + 7) is Nr {1, 2}.

Small values of the range of ν2(n2 + 7) admit easy characterization. An example
is discussed next.

Lemma 5.2. The equation ν2(n2 + 7) = 0 is equivalent to n ≡ 0 mod 2.

Proof. The valuation is 0 if and only if n2 + 7 ≡ 1 mod 2. In turn, this is
equivalent to n ≡ 0 mod 2. �

There are two elements missing from this range.



THE VALUATION TREE FOR n2 + 7 101

Lemma 5.3. The equations ν2(n2 + 7) = 1 or 2 have no solutions.

Proof. Any solution satisfies n2 + 7 = 2t. Therefore n2 + 7 = 2t and this implies
n is odd, say n = 2m+ 1. Then

(5.1) n2 + 7 = 4m2 + 4m+ 8 = 4(m2 +m+ 2) = 8

(
m(m+ 1)

2
+ 1

)
.

This implies ν2(n2 + 7) > 3 and establishes the result. �

The next result continues describing the appearance of small values in the range
of ν2(n2 + 7).

Lemma 5.4. The equation ν2(n2 + 7) = 3 is equivalent to n ≡ ±1 mod 23.

Proof. If n = 8t + 1, then n2 + 7 = (8t + 1)2 + 7 = 8(8t2 + 2t + 1). Thus,
ν2(n2 + 7) = 3. The case of n = 8t+ 7 is similar. Conversely, if ν2(n2 + 7) = 3, then
n2 + 7 = 23s, with s odd. Therefore n2 ≡ 1 mod 8 and this implies n ≡ ±1 mod 8, as
claimed. �

The position of indices with valuation 4, 5 are established in a similar manner.

Lemma 5.5. The equation ν2(n2 + 7) = 4 is equivalent to n ≡ ±3 mod 24.
Similarly, ν2(n2 + 7) = 5 is equivalent to n ≡ ±5 mod 25.

The previous results suggest a clear pattern.

Problem 5.6. Given k ∈ N at least 3, prove there is αk ∈ N such that

ν2(n2 + 7) = k if and only if n ≡ ±αk mod 2k.

A characterization of the sequence {αk} would be desirable.

Finally, the next table shows the smallest index n for which ν2(n2 + 7) = i. This
index is called λi.

i 3 4 5 6 7 8 9 10 11 12 13 14 15 16
λi 1 3 5 21 11 53 75 331 843 1867 3915 8011 181 16565

Figure 12. The minimum index n for which ν2(n2 + 7) = i

Conclusions

The sequence of valuations {ν2(n2 + a)}, for 1 6 a 6 6 have been represented in
terms of a finite tree. This corresponds to a closed-form expression for this valuation.
The case a = 7 produces an infinite tree, with two branches. The experimental
behavior of the tree makes it unlikely that such a closed-form expression exists for
ν2(n2 + 7).
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