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A closed-form solution might be given by a tree.

Valuations of quadratic polynomials
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Aashita Kesarwanib, Gary Lavigneb, Luis A. Medinad, Victor H. Mollb,
Isabelle Noguese, Senthil Rajasekaranb, Eric Rowlandf and Amber Yuang

Abstract. The p-adic valuation of an integer x is the largest power of the prime
p that divides x. It is denoted by νp(x). This work describes properties of the
valuation ν2(n2+a), with a ∈ N. A distinction of the behavior of these valuations
for a ≡ 7 mod 8 or not is presented.

1. Introduction

The fact that the central binomial coefficients Cn =
(

2n
n

)

are even numbers is often
discussed in elementary courses. The proof usually comes from pointing out that
Pascal’s triangle is symmetric with respect to its centerline and that Cn is obtained
by adding the two middle adjacent elements from the previous row. This yields

(

2n
n

)

=

2
(

2n−1
n

)

, and the problem has been solved.
The curious reader now will ask whether it is possible to find a closed-form for

the exact power of 2 that divides Cn. This is denoted by ν2(Cn) and is called the
2-adic valuation of Cn. More general, if p is a prime number and x ∈ N, then νp(x),
the p-adic valuation of x, is defined as the highest power of p that divides x.

The identity νp(Cn) = νp((2n)!) − 2νp(n!) reduces the valuation of Cn to that of

factorials. For this task, the formula νp(n!) = bn/pc+
⌊

n/p2
⌋

+ · · · given by Legendre
[7] is well-known. An alternative version can be given in terms of the expansion
n = a0 + a1p+ a2p

2 + · · ·+ arp
r of n in base p. Observe that this expansion already

contains the formula νp(n) = min{j : aj 6= 0}. In the case of factorials one uses the
function sp(n) = a0 + a1 + · · ·+ ar to write Legendre’s formula as

(1.1) νp(n!) =
n− sp(n)

p− 1
.
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Since the sums of digits sp(n) is comparable to lnn, it follows that νp(n!) ∼ n/(p− 1)
as n → ∞. In the particular case p = 2, the formula (1.1) implies the identity

(1.2) ν2(Cn) = ν2((2n)!)− 2ν2(n!) = 2s2(n)− s2(2n) = s2(n),

where the last step follows from the fact that the binary expansion of 2n is obtained by
appending a 0 at the end of the expansion for n. It follows from here that Cn is always
even and that Cn/2 is odd precisely when n is a power of 2. Then ν2(Cn) = s2(n)
deserves to be called a closed-form.

The question of what constitute a closed-form answer to a problem depends on the
context. This has been discussed in [3] in reference to special numbers and recently
in [2] for special functions.

This work discusses the valuation ν2(n
2 + a) for a ∈ N. This is the simplest class

of polynomials and the analysis of these valuations contain all the features appearing
in the general situation.
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Figure 1. The valuation ν2(n
2 + 8) for 0 6 n 6 40
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Figure 2. The valuation ν2(n
2 + 7) for 0 6 n 6 40

The main result is expressed in terms of sums of squares. Recall a famous theorem
of Lagrange stating that every positive integer can be written as a sum of four squares
[5]. It turns out that ν2(n

2 + a) has a different type of behavior depending whether a
needs four squares or not.
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2. The construction of a tree

Let p be a prime and f(x) a polynomial with integer coefficients. Then

(2.1) f(i+mp) ≡ f(i) mod p.

Therefore the values of f(i) mod p are determined by those in the list

(2.2) L1 := {f(0) mod p, f(1) mod p, · · · , f(p− 1) mod p} .

Lemma 2.1. Assume i0 ∈ {0, 1, · · · , p− 1} satisfies f(i0) 6≡ 0 mod p. Then

(2.3) νp(f(i)) = 0 for any i ≡ i0 mod p.

Example 2.2. Let f(x) = x2 + 3x+ 15 and p = 7. Then the list in (2.2) is

(2.4) L1 = {1, 5, 4, 5, 1, 6, 6}
so it follows that, as n runs over N, the value f(n) is never divisible by 7.

It remains to discuss the indices i0 with f(i0) ≡ 0 mod p. Then (2.1) implies
νp(f(i0 + mp)) > 1, but a larger value of the valuation is possible. In order to
determine this value, observe that every number congruent to i0 mod p is in the set

{i0 + jp+mp2 : 0 6 j 6 p− 1 and m ∈ N}.
Moreover,

(2.5) f(i0 + jp+mp2) ≡ f(i0 + jp) mod p2.

Therefore, the values of f(i) mod p2 for the indices i ≡ i0 mod p are determined by
the values

(2.6) L2 :=
{

f(i0) mod p2, f(i0 + p) mod p2, · · · , f(i0 + (p− 1)p) mod p2
}

.

As before, if a value in the list L1 is not zero, then a valuation is determined.

Lemma 2.3. Let i0, i1 ∈ {0, 1, · · · , p− 1} satisfy

(2.7) f(i0) ≡ 0 mod p and f(i0 + i1p) 6≡ 0 mod p2.

Then

(2.8) νp(f(i)) = 1 for any i ≡ i0 + i1p mod p2.

Example 2.4. Let f(x) = x2 +3x+17 and p = 7. The list L1 shows that f(i) 6≡
0 mod 7 if i ≡ 0, 2, 4, 5, 6 mod 7. The evaluations f(1) = 21 and f(3) = 35 imply that
f(i0) ≡ 0 mod 7 for i ≡ 1, 3 mod 7. The list L2 for i0 = 1 is {21, 7, 42, 28, 14, 0, 35}.
Thus the vertex corresponding to i1 = 5 satisfies f(1 + 7 · 5 + 72n) ≡ 0 mod 72 and
the process continues. The remaining vertices have valuation 1:

(2.9) ν7(1 + 7j + 72n) = 1, for j = 0, 1, 2, 3, 4, 6.

The situation for i0 = 3 is similar.

Continuing this process produces the next result.
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Lemma 2.5. Assume there are indices i0, i1, · · · , in−1 ∈ {0, 1, · · · , p− 1} satis-
fying

f(i0) ≡ 0 mod p

f(i0 + i1p) ≡ 0 mod p2

f(i0 + i1p+ i2p
2) ≡ 0 mod p3

· · · · · · · · ·
f(i0 + i1p+ i2p

2 + · · ·+ inp
n) 6≡ 0 mod pn+1.

Then any index i ≡ i0 + i1p+ · · ·+ inp
n mod pn+1, satisfies

(2.10) νp(f(i)) = n.

The process described above can be explained in terms of a tree. The construction
starts with a root vertex that forms the zeroth level. This is split into p vertices at
the first level corresponding to the values i mod p. The values of the polynomial f on
these vertices, taken modulo p, gives the list L1. The vertices are joined to the root
level as indicated in Figure 3.

n

0 0 * 0 0

Figure 3. The first level of a tree

In case none of the values f(i) in L1 are divisible by p, the process stops and
νp(f(i)) = 0 for every i ∈ N. An example of this situation is given by p = 2 and
f(x) = x2 + x + 1. The other option is that there is vertex with index i0 mod p
for which f(i0) ≡ 0 mod p. This generates p descendants, simply by considering
all possible remainders modulo p2 of a number congruent to i0 mod p. They are
part of the second level. These vertices are labelled by i ≡ i0 + i1p mod p2, where
i1 ∈ {0, 1, · · · , p− 1} and they are joined to the vertex i0 as shown in Figure 4. The
valuation νp(f(i)) is completely determined for indices i ≡ i0 + i1p mod p2 for which
f(i0 + i1p) 6≡ 0 mod p2. Lemma 2.3 shows that, in this case, νp(f(i)) = 1. On the
other hand, each index i1 for which f(i0+ i1p) ≡ 0 mod p2, is split into p new vertices
that are connected to i0+i1P to form part of the third level and the process continues.

Now imagine that it is possible to continue the process described above indefinitely.
In terms of the tree, this corresponds naturally to the notion of an infinite branch.
But what is the arithmetic meaning of a such a phenomena? The sequence of indices
generated to come an infinite brach have the form

(2.11) i0, i0 + i1p, i0 + i1p+ i2p
2, · · ·

and the vertices along this branch satisfy

(2.12) i ≡ i0 mod p, i ≡ i0 + i1p mod p2, i ≡ i0 + i1p+ i2p
2 mod p3, · · · .
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n

0 0 *

1 * 1 1 1

0 0

Figure 4. The second level of a tree

Introduce the notation

(2.13) an = i0 + i1p+ i2p
2 + · · ·+ in−1p

n−1.

Then the integers an → ∞ if convergence is defined in the usual manner. On the other
hand, the integers an satisfy

(1) 0 6 an < pn for n = 1, 2, 3, · · ·
(2) an ≡ an+1 mod pn for n = 1, 2, 3, · · · .

These properties may be found in Theorem 2, page 11 of [6] or in [4, page 83] where
the name coherent sequence is used. The point is that conditions (1) and (2) guarantee
that the sequence {an : n ∈ N} corresponds to a Cauchy sequence in Qp. This is the
field of p-adic numbers, defined as the completion of Q under the absolute value

|x|p = p−νp(x) for x 6= 0(2.14)

|0|p = 0.

In other words, the sequence of indices corresponding to an infinite branch converges
to a p-adic number x ∈ Qp. The reader unfamiliar with these concepts, should think of
these numbers as analogues of real numbers. They simply come from Q by completion,
same as R. A nice introduction to these ideas, aside from the text already mentioned
above, is the book by F. Gouvea [4]. Now that the limiting value of the sequence of
indices has been identified as x ∈ Qp, what can be said about the limiting value of
f(an)? The relation (2.10) shows that νp(f(x)) = +∞; that is, f(x) = 0. Of course,
this requires f to be a continuous function in this new way of measuring convergence.
How can this not be true? It turns out that this is a simple exercise and details are
left to the reader. In summary:

Theorem 2.6. Any infinite branch in the tree associated to the polynomial f
corresponds to a root of f(x) = 0 in the p-adic field Qp.

Corollary 2.7. The p-adic valuation νp(f(n)) admits a closed-form formula if
the equation f(x) = 0 has no solutions in Qp.
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3. The 2-adic valuations of n2 + a

The tree associated to a prime p and a polynomial f , described in the previous section,
is given in detail for the case p = 2 and f(x) = x2 + a with fixed a ∈ N. A direct
computation of the values ν2(n

2 + a) using a symbolic language, will show that this
sequence admits a simple closed-form for a 6= 4, 7 mod 8 and for these two remaining
cases, the valuation is quite complicated. One of the goals in the next sections is to
shed light on this phenomena. The reasons behind this are connected to the analysis
of the equation x2 + a = 0 in the ring of p-adic integers and the presence of infinite
branches. This quadratic example contains all the ingredients for the analysis of
ν2(f(n)) for a general polynomial.

Lemma 3.1. For n ∈ N and a ≡ 1 mod 4

ν2(n
2 + a) = ν2(n

2 + 1) =

{

1 if n is odd

0 if n is even.

Proof. To verify this, write a = 4t+ 1. If n is even, then n2 + a and n2 + 1 are
both odd and the valuations match. In the case n = 2m+ 1, then

(3.1) n2 + a = 2(2m2 + 2m+ 2t+ 1) and n2 + 1 = 2(2m2 + 2m+ 1),

and the valuations also match. �

The same argument works for a ≡ 2 mod 4.

Lemma 3.2. For n ∈ N and a ≡ 2 mod 4,

ν2(n
2 + a) = ν2(n

2 + 2) =

{

0 if n is odd

1 if n is even,

It remains to analyze the classes a ≡ 0, 3 mod 4. These require to consider residues
modulo 8, namely a ≡ 0, 3, 4, 7 mod 8. The case a ≡ 3 mod 8 is simple.

Lemma 3.3. For n ∈ N and a ≡ 3 mod 8. Then

ν2(n
2 + a) = ν2(n

2 + 3) =

{

2 if n is odd

0 if n is even.

Proof. Write a = 8t + 3. If n is even, then n2 + a and n2 + 3 are both odd,
therefore their valuations agree. If n is odd, say n = 2m+1, then n2+3 = 4(m2+m+1)
has valuation 2 and so does n2 + a = 4(m2 +m+ 2t+ 1). �

The discussion of the case a ≡ 0 mod 8 is divided into two cases according to
whether a ≡ 0 or 8 mod 16. In the first case it is easy to produce a closed-form
formula.

Lemma 3.4. For n ∈ N and a ≡ 8 mod 16

(3.2) ν2(n
2 + a) = ν2(n

2 + 8) =











0 if n ≡ 1 mod 2

2 if n ≡ 2 mod 4

3 if n ≡ 0 mod 4.
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Proof. Write a = 8(2s+ 1). If n is odd, then so is n2 + a and both valuations
are 0. If n ≡ 2 mod 4, write n = 4t + 2 and use n2 + a = 4(4t2 + 4t + 4s + 3) to
conclude that ν2(n

2 + a) = ν2(n
2 + 8) = 2. Finally, if n ≡ 0 mod 4, write n = 4t and

use n2 + a = 8(2t2 + 2s+ 1) to verify that both valuations match. �

For values of a ≡ 0 mod 16, the valuation ν2(n
2 + a) is related to ν2(m

2 + a/4).
This yields an iterative procedure.

Lemma 3.5. Let n ∈ N and a ≡ 0 mod 16. Then

(3.3) ν2(n
2 + a) =

{

0 if n is odd

2 + ν2

(

(

n
2

)2
+ a

4

)

if n is even.

The initial condition for this procedure is a = 4. A closed-form expression for
ν2(n

2 + 4) is presented next.

Lemma 3.6. Let n ∈ N. Then

(3.4) ν2(n
2 + 4) =











0 if n ≡ 1 mod 2

3 if n ≡ 2 mod 4

2 if n ≡ 0 mod 4.

Proof. If n ≡ 1 mod 2, then n2 + 4 is odd. If n ≡ 2 mod 4, write n = 4t + 2
and observe that n2 + 4 = 8(2t2 + 2t+ 1) to conclude that ν2(n

2 + 4) = 3. The case
n ≡ 0 mod 4 is similar. �

Example 3.7. Consider the case a = 16. Lemma 3.5 gives

(3.5) ν2(n
2 + 16) =

{

0 if n is odd

2 + ν2

(

(

n
2

)2
+ 4

)

if n is even.

Lemma 3.6 then shows that

(3.6) ν2(n
2 + 16) =



















0 if n ≡ 1, 3, 5, 7 mod 8

2 if n ≡ 2, 6 mod 8

5 if n ≡ 4 mod 8

4 if n ≡ 0 mod 8.

The final case is a ≡ 4 mod 8.

Lemma 3.8. Let n ∈ N and a ≡ 4 mod 8. Then ν2(n
2 + a) either has a closed-

form or it can be reduced to ν2(m
2 + 7).

Proof. Write a = 8t+ 4 and observe that

(3.7) ν2(n
2 + a) = ν2(n

2 + 8t+ 4) = 0

if n is odd. If n = 2m, then

(3.8) ν2(n
2 + a) = ν2(4m

2 + 8t+ 4) = 2 + ν2(m
2 + 2t+ 1).

The last function reduces to ν2(m
2 + a1) with a1 odd. This implies the statement

since there are closed-form formulas for a ≡ 1, 3, 5 mod 8. �
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Example 3.9. Let a = 12. Then n2+12 is odd for n odd. Therefore ν2(n
2+12) =

0 in this case. On the other hand if n is even, say n = 2m, it follows that

(3.9) ν2(n
2 + 12) = 2 + ν2(m

2 + 3) =

{

4 if m ≡ 1 mod 2,

0 if m ≡ 0 mod 2.

This produces

(3.10) ν2(n
2 + 12) =











2 if n ≡ 0 mod 4

0 if n ≡ 1, 3 mod 4

4 if n ≡ 2 mod 4.

Example 3.10. The case a = 20 is similar. Clearly ν2(n
2 + 20) = 0 if n is odd.

For n even, say n = 2m,

(3.11) ν2(n
2 + 20) = 2 + ν2(m

2 + 5)

and the expression

(3.12) ν2(n
2 + 20) =











0 if n ≡ 1, 3 mod 4

3 if n ≡ 2 mod 4

2 if n ≡ 0 mod 4

now follows from Lemma 3.1.

Example 3.11. The final example is a = 28. It is clear that ν2(n
2 +28) = 0 if n

is odd. On the other hand, if n = 2m, then the valuation is reduced to the case n = 7
in view of

(3.13) ν2(n
2 + 28) = 2 + ν2(m

2 + 7).

The final case, a ≡ 7 mod 8 is discussed in the next section. This section concludes
with the formulas for ν2(n

2 + a) when 1 6 a 6 30.

a = 1, 5, 9, 13, 17, 21, 25, 29 · · · (Lemma 3.1):

ν2(n
2 + a) =

{

0 if n ≡ 0 mod 2

1 if n ≡ 1 mod 2.

a = 2, 6, 10, 14, 18, 22, 26, 30, · · · (Lemma 3.2):

ν2(n
2 + 2) =

{

0 if n ≡ 1 mod 2,

2 if n ≡ 0 mod 2.

a = 3, 11, 19, 27, · · · (Lemma 3.3):

ν2(n
2 + 3) =

{

2 if n ≡ 1 mod 2,

0 if n ≡ 0 mod 2.
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a = 4 (Lemma 3.6):

ν2(n
2 + 4) =











0 if n ≡ 1, 3 mod 4

3 if n ≡ 2 mod 4

2 if n ≡ 0 mod 4.

a = 8, 24, · · · (Lemma 3.4):

ν2(n
2 + 8) =











0 if n ≡ 1, 3 mod 4

2 if n ≡ 2 mod 4

3 if n ≡ 0 mod 4.

a = 12 (Example 3.9):

ν2(n
2 + 12) =











2 if n ≡ 0 mod 4

0 if n ≡ 1, 3 mod 4

4 if n ≡ 2 mod 4.

a = 16 (Example 3.7):

ν2(n
2 + 16) =



















0 if n ≡ 1, 3, 5, 7 mod 8

2 if n ≡ 2, 6 mod 8

5 if n ≡ 4 mod 8

4 if n ≡ 0 mod 8.

a = 20 (Example 3.10):

ν2(n
2 + 20) =











0 if n ≡ 1, 3 mod 4

3 if n ≡ 2 mod 4

2 if n ≡ 0 mod 4.

a = 28 (Example 3.11):

ν2(n
2 + 28) =

{

0 if n is odd,

2 + ν2

(

(

n
2

)2
+ 7

)

if n is even.

The only values of a, in the range 1 6 a 6 30, not included in the previous list
are a = 7, 15, 23. These are discussed in the next section.

4. The 2-adic valuation of n2 + 7

Given a polynomial f(x) with integer coefficients, the sequence {ν2(f(n)) : n ∈ N}
has been described via a tree. This is called the valuation tree attached to f . The
vertices correspond to some selected classes

(4.1) Cm,j = {2mi+ j : i ∈ N} ,
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starting with the root vertex v0 for C0,0 = N. The procedure to select the classes is
explained below in the example f(x) = x2 + 16. This produces an alternative way of
the formula in Example 3.7. Some notation for the vertices of the tree is introduced
next.

Definition 4.1. A residue class Cm,j is called terminal for the tree attached to
f , if the valuation ν2 (f(2

mi+ j)) is independent of the index i ∈ N. Otherwise it is
called non-terminal. The same terminology is given to vertices. In the tree, terminal
vertices are marked by their constant valuation and non-terminal vertices are marked
with a star.

Example 4.2. The construction of the tree for ν2(n
2 + 16) starts with the fact

that ν2(1
2 + 16) = 0 and ν2(2

2 + 16) = 2 6= 0, showing that the root node v0 is
non-terminal. This node is split into two vertices that form the first level. These
correspond to C1,0 = {2i : i ∈ N} and C1,1 = {2i+ 1 : i ∈ N}. For the class C1,0, the
valuation

ν2((2i)
2 + 16) = 2 + ν2(i

2 + 4)

depends on i, so C1,0 is non-terminal. For the class C1,1,

ν2((2i+ 1)2 + 16) = ν2(4i
2 + 4i+ 17) = 0,

showing that C1,1 is a terminal class with valuation 0. Figure 5 shows the root and
the first level of the tree associated to ν2(n

2 + 16).

v0

∗ 0

0 1

Figure 5. The root and the first level of the tree for ν2(n
2 + 16)

The class C1,0 is now split into C2,0 = {4i : i ∈ N} and C2,2 = {4i+ 2 : i ∈ N}.
These two classes form the second level. For C2,0, the valuation

ν2((4i)
2 + 16) = 4 + ν2(i

2 + 1)

shows that this class is non-terminal. In the class C2,2,

ν2((4i+ 2)2 + 16) = ν2(16i
2 + 16i+ 20) = 2 + ν2(4i

2 + 4i+ 5) = 2.

Therefore C2,2 is a terminal class with valuation 2.

The third level contains the two classes C3,0 and C3,4 descending from C2,0. The
first class is terminal with valuation 4, since

ν2((8i)
2 + 16) = 4 + ν2(4i

2 + 1) = 4.

The second class is also terminal, with valuation 5, since

ν2((8i+ 4)2 + 16) = ν2(64i
2 + 64i+ 32) = 5 + ν2(2i

2 + 2i+ 1) = 5.

Therefore, every class in the third level is terminal and the tree is complete.
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n

∗

∗ 2

0

0 1

0 1

Figure 6. Two levels of the tree for ν2(n
2 + 16)

n

∗

∗

4 5

2

0

0 1

0 1

0 1

Figure 7. The complete tree for ν2(n
2 + 16)

Example 4.3. The valuations ν2(n
2+7) present a more erratic behavior than the

cases considered before. Perhaps it is not reasonable to expect that a simple formula,
such as the one found for ν2(n

2 +1), will exist. Figure 8 gives the graph of ν2(n
2 +7)

for 0 6= n 6 150.

20 40 60 80 100 120 140

2

4

6

8

Figure 8. The valuation ν2(n
2 + 7) for 0 6 n 6 150
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n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
λn 1 3 5 21 11 53 75 331 843 1867 3915 8011 181 16565

Figure 9. The minimum index i for which ν2(i
2 + 7) = n

The range of ν2(n
2 +7) presents some interesting questions. It is clear that, for n

even, ν2(n
2 + 7) = 0. On the other hand, for n odd, this valuation is at least 3 since

(4.2) ν2((2n+ 1)2 + 7) = ν2(4n
2 + 4n+ 8) = 3 + ν2

(

1
2n(n+ 1) + 1

)

.

Thus, there are no values n such that ν2(n
2+7) = 1, or 2. It seems that these are the

only two values omitted by this valuation. The table shows the values of λn defined
as the minimum index i for which ν2(i

2 + 7) = n, in the range 3 6 n 6 16.

Construction of the tree. In the case of ν2(n
2 + 7), the construction of the tree

begins as before. The values ν2(1
2+7) = 3 6= ν2(2

2+7) = 0 show that the root vertex
is non-terminal. Therefore it is split into two classes to form the first level:

(4.3) C1,0 = {2n : n ∈ N} and C1,1 = {2n+ 1 : n ∈ N}.
It is easy to check that the class C1,0 is terminal since ν2((2n)

2 + 7) = 0. Figure 10
shows the root vertex and the first level of the tree for ν2(n

2 + 7).

v0

0 ∗

0 1

Figure 10. The root and the first level of the tree for ν2(n
2 + 7)

In the case of the class C1,1, the congruence (2n+ 1)2 + 7 ≡ 0 mod 2 shows that
every number n ∈ C1,1 satisfies ν2(n

2 + 7) > 1. It turns out that, if n ∈ C1,1, then
n = 2n1 + 1 and

(4.4) (2n1 + 1)2 + 7 = 4(n2
1 + n1 + 2) ≡ 0 mod 8

so actually ν2(n
2 + 7) > 3. The class C1,1 is not-terminal, since 1, 3 ∈ C1,1 and

ν2(1
2 + 7) = 3 6= ν2(3

2 + 7) = 4.
The vertex corresponding to C1,1 is split to form part of the third level. This

gives the classes C2,1 and C2,3; that is the sequences 4n+ 1 and 4n+ 3. It is easy to
see that neither of these vertices is terminal. For instance, C2,1 is not terminal, since
every number in it has valuation at least 3 and the congruence

(4.5) (4n+ 1)2 + 7 = 16n2 + 8n+ 8 ≡ 0 mod 24

shows that the valuation is 3 and at least 4 for n odd. A similar argument shows that
C2,3 is not terminal. Theorem 4.4 below shows the existence of two infinite branches
for the tree associate to f(x) = x2 + 7. The connection to these infinite branches and
the roots of f(x) = 0 in the 2-adic field Q2 is given in the next section.
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Theorem 4.4. Let v be a non-terminating node at the k-th level for the valuation
tree of ν2(n

2 + 7). Then v splits into two vertices at the (k + 1)-level. Exactly one of
them terminates, with valuation k. The second one has valuation at least k + 1.

Proof. The numbers associated to the vertex v have the form

(4.6) Nk = 2kn+ 2k−1ak−1 + bk−2

where

(4.7) bk−2 = 2k−2ak−2 + · · ·+ 2a1 + a0

has been determined. The induction hypothesis imply that N2
k +7 ≡ 0 mod 2k, so that

ν2(N
2
k +7) > k. The question is whether the vertex v is terminal or not is reduced to

the analysis of possible splits of v to the next level. This corresponds to the choices
ak−1 = 0 or 1.

Consider now the congruence

(4.8) N2
k + 7 ≡ 0 mod 2k+1

that is,

(4.9)
[

2kn+ 2k−1ak−1 + bk−2

]2
+ 7 ≡ 0 mod 2k+1

for the unknown ak−1. Then (4.9) reduces to

(4.10) 2kak−1bk−2 + b2k−2 + 7 ≡ 0 mod 2k+1.

Observe that bk−2 ≡ a0 mod 2, so (4.10) becomes

(4.11) 2kak−1a0 ≡ −(b2k−2 + 7) mod 2k+1.

By induction b2k−2 + 7 = 2km yielding

(4.12) ak−1 ≡ −m mod 2

as the solution to (4.9). Therefore the vertex descending from v with ak−1 6≡ −m mod
2 terminates with valuation k. The other vertex has valuation at least k + 1. This
proves that v is non-terminating (since one of its descendants has valuation k and
the other has at least k + 1). This continues the inductive process and completes the
proof. �

The case a ≡ 7 mod 8 is completely similar to a = 7.

Theorem 4.5. Assume a ≡ 7 mod 8. Then the valuation ν2(n
2+a) is determined

by a tree with two infinite branches.

Note 4.6. The proof presented before is simply an adaptation of the Hensel’s
lemma, the version of Newton’s method for solving polynomial equations in Q2. The
reader will find more information in Section 3.4 of [4].
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5. The solutions to ax2 + c = 0 in the 2-adic field Q2

The existence of two infinite branches in the tree for f(x) = x2 + 7 is connected to
solutions to the equation f(x) = 0 in the 2-adic field Q2. This section explores the
slightly more general question of ν2(an

2 + c), where a, c ∈ Z. It is assumed that
gcd(a, c) = 1, since any common divisor just produces a shift in the valuation. The
case a even and c odd is simple: ν2(an

2 + c) = 0. Therefore, it is assumed that a is
odd and c is even. It turns out to be convenient to write

(5.1) c = 4ib, with b 6≡ 0 mod 4.

Then the solutions to

(5.2) fa,c(x) = ax2 + c = 0

are given by

(5.3) x = ±2i
√

− b

a
.

The problem has been reduced to the study of square roots in the field Q2.
The classical binomial theorem

(5.4) (1− x)−s =

∞
∑

k=0

(s)k
k!

xk

gives the identity
√

− b

a
=

∞
∑

k=0

(

− 1
2

)

k

k!

(

1 +
b

a

)k

(5.5)

= 1−
∞
∑

k=1

1 · 3 · · · (2k − 3)

2kk!ak
(a+ b)k.

It remains to verify that this last series converges in Q2.
This is the point in the argument where a remarkable property of p-adic numbers

simplifies things. Recall that the norm in Q2 defined in (2.14) satisfies a stronger
version of the triangle inequality:

(5.6) ‖x+ y‖2 6 Max{‖x‖2, ‖y‖2}.
The extension to more summands

(5.7) ‖
n
∑

k=1

xk‖2 6 Max{‖x‖j : 1 6 j 6 n}

has the remarkable consequence stated below. This appears as Corollary 4.1.2 in [4].

Theorem 5.1. Let ak ∈ Q2. Then the series

∞
∑

k=1

ak converges in Q2 if and only

if the general term ak converges to 0 in Q2.
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The relation ‖x‖2 = 2−ν2(x) shows that the series in (5.5) converges if and only if

(5.8) lim
k→∞

ν2

(

1 · 3 · · · (2k − 3)

2kk!ak
(a+ b)k

)

= +∞.

Legendre’s relation (1.1) and the fact that a is odd, converts (5.8) into

(5.9) lim
k→∞

(ν2(a+ b)− 2) k + s2(k) = +∞.

The next result now follows from the estimate s2(k) = O(log k) as k → ∞.

Theorem 5.2. Let a, c be integers with a odd and c even. Write c = 4ib with
b 6≡ 0 mod 4. Then the equation fa,c(x) = ax2 + c = 0 has a solution in the 2-adic
field Q2 if and only if ν2(a+ b) > 3.

This result is expressed in terms of trees.

Corollary 5.3. Let b be as in the previous theorem. Then the tree associated to
the polynomial fa,c(x) = ax2 + c has infinite branches if and only if a+ b ≡ 0 mod 8.

In particular, the number b must be odd. Therefore, infinite branches appear
precisely when c = 4ib, with b an odd number with a+b ≡ 0 mod 8. In the case a = 1,
this gives b ≡ 7 mod 8.

6. A random walk coming from the valuation of n2 + 7

The sequence Nk constructed in the previous section has the form

(6.1) Nk = 2kn+ 2k−1ak−1 + · · ·+ 2a1 + a0,

with aj = 0 or 1. The two sequences start with {1, 0} and {1, 1}, respectively. The
numbers aj are chosen in order to satisfy the congruence

(6.2) N2
k + 7 ≡ 0 mod 2k+1.

It is clear that Nk satisfy the consistency condition

(6.3) Nk ≡ Nk−1 mod 2k−1.

This is precisely the definition of a 2-adic integer ; see F. Gouvea [4] for more details. It
turns out that {Nk} are precisely the two roots, denoted by x1 and x2, of the equation
x2 + 7 = 0 in the 2-adic numbers Q2.

For p prime, the p-adic numbersQp are defined as the completion of Q with respect
to the metric

(6.4) |x|p = p−νp(|x|), for x ∈ Q

where νp(x) is the p-adic valuation described in the introduction. Recall that a com-
plete space is one where the notions of Cauchy and convergent are one and the same.
Thus, Qp should be thought of a variation of the usual real numbers R. A theorem of
Ostrowski [4] shows that, aside from R, these are the only natural ways to complete
Q.
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The discussion presented in the previous sections show that the tree associated
with ν2(n

2+7) has the feature that, starting at level 2, it contains two infinite branches.
The branch is labeled by a sequence {ak : k ∈ N}, where ak = 0 indicates that the
left branch of the tree at level k continues to level k+1 and ak = 1 that the right one
does. One of these branches with {1, 0}, that corresponds to the vertex v2 and the
continues with

L = {1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0}.
The sequence L naturally corresponds to the first digits of the root x1 of x2 + 7 = 0.

The questions stated below are of statistical nature and they will be discussed in
future work.

• Assume you are sitting at vertex at the k-th level of the branch. Is there an equal
chance to move left or right at the next level?
• Are the choices of left/right at one level independent of the previous one?
• Is there a natural way to scale the sum a1 + a2 + · · · + an, in order to obtain a
meaningful result for the behavior of the sequence as n → ∞?
• Is it possible to consider {aj} as a sequence of random variables taking values {0, 1}
and to determine their properties?
• Introduce the notation

(6.5) xk = ak − 1
2

and consider xk to be a random variable taking values ± 1
2 . If the values taken by {xk}

were equally likely and the random variables were independent, then Exk = 0 and the
central limit theorem would imply

(6.6)
1√
n

n
∑

k=1

xk → N(0, 1)

where N(0, 1) is a normal distribution. Does this happen in this situation?
The next figures show the sum x1 + · · · + xn for n 6 1500 and n 6 50000,

respectively.
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Figure 11. The walk coming from a = 7
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Figure 12. The walk coming from a = 7
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