SCIENTIA
Series A: Mathematical Sciences, Vol. 29 (2019), 61–63
Universidad Técnica Federico Santa María
Valparaíso, Chile
ISSN 0716-8446
© Universidad Técnica Federico Santa María 2019

A small trove of functional equations

M. L. Glasser

ABSTRACT. A new proof is presented for an old algebraic identity which is then used to produce the general functional relation $\$

$$\sum_{k=0}^{n-1} \frac{(m)_k}{k!} g(m,k) + \sum_{k=0}^{m-1} \frac{(n)_k}{k!} g(k,n) = g(0,0),$$

where g is an Euler transform, and a related integral identity. Several examples are given.

1. Introduction

We begin with the expression

(1.1)
$$f_0(m,n,x) := \frac{1}{n} {}_2F_1(1,m+n;n+1,x)$$

By the hypergeometric linear transformation 7.3.1.(5) of [1]

(1.2)

$$f_0(n,m,1-x) = -\frac{1}{n} {}_2F_1(1,m+n;n+1;x) + \frac{\Gamma(m)\Gamma(n)}{x^n\Gamma(m+n)} {}_2F_1(m,1-n;1-n;x)$$

= $-f_0(m,n,x) + \frac{B(m,n)}{x^n(1-x)^m}.$

Next, by equation 7.3.1(123) of [1] we find

(1.3)
$$f_0(m,n,x) = \frac{B(m,n)}{x^n} \left[\frac{1}{(1-x)^m} - \sum_{k=0}^{n-1} \frac{(m)_k}{k!} x^k \right].$$

Consequently,

(1.4)
$$x^{n}(1-x)^{m}[f_{0}(m,n,x) + f_{0}(n,m,1-x)] = B(m,n)$$

2000 Mathematics Subject Classification. Primary C3320 Secondary C3305.

Key words and phrases. Euler transform, Hypergeometric function, functional identity.

61

is independent of x. By (1.3) this becomes

(1.5)
$$S(m,n,x) := (1-x)^m \sum_{k=0}^{n-1} \frac{(m)_k}{k!} x^k + x^n \sum_{k=0}^{m-1} \frac{(n)_k}{k!} (1-x)^k = 1.$$

The identity (1.5), which is the subject of an engaging recent historical essay by T. H. Koornwinder and M. J. Schlosser [2] can be traced back to an exchange between Samuel Pepys and Isaac Newton in 1693, and may have even earlier roots.

2. Applications

If (1.5) is multiplied by any function f(x) and integrated over an interval [a,b] one has the formal identity

(2.1)
$$\sum_{k=0}^{n-1} \frac{(m)_k}{k!} F(m,k) + \sum_{k=0}^{m-1} \frac{(n)_k}{k!} F(k,n) = F(0,0)$$

with

(2.2)
$$F(m,n) := \int_{a}^{b} x^{n} (1-x)^{m} f(x) dx.$$

There are many interesting cases, especially for hypergeometric functions, as the following two examples indicate.

Example 2.1. From

(2.3)
$$\int_0^1 x^n (1-x)^m \ln x \, dx = B(m+1,n+1)[\psi(n+1) - \psi(m+n+2)]$$

equation (2.1) yields

(2.4)
$$\sum_{k=0}^{n-1} \frac{m}{(m+k)(m+k+1)} [\psi(k+1) - \psi(m+k+2)] - \sum_{k=0}^{m-1} \frac{n}{(n+k)(n+k+1)} \psi(n+k+2) = -\frac{m}{m+n} \psi(n+1) - 1.$$

Example 2.2. From

(2.5)
$$\int_0^1 x^k (1-x)^n \, _2F_1(a,b;c;zx) dx = \frac{k!n!}{(k+n+1)!} \, _3F_2(a,b,k+1;c,k+n+2;z)$$

we get the extended contiguity relation

$$(2.6) \quad \sum_{k=0}^{m-1} \frac{n}{(n+k)(n+k+1)} \, {}_{3}F_{2}(a,b,n+1;c,n+k+2;z) + \\ \sum_{k=0}^{n-1} \frac{m}{(m+k)(m+k+1)} \, {}_{3}F_{2}(a,b,k+1;c,m+k+2;z) \\ = \, {}_{3}F_{2}(a,b,1;c,2;z).$$

If (1.4) is multiplied by any function g(x) which we shall assume possesses the reflection property g(1-x) = g(x), then by integrating over [0,1] we find

(2.7)
$$\frac{1}{n}G(m,n) + \frac{1}{m}G(n,m) = B(m,n)G(0,0),$$

where

(2.8)
$$G(m,n) = \int_0^1 x^n (1-x)^m {}_2F_1(1,m+n;n+1;x)g(x)dx.$$

Furthermore, by Carlson's theorem [3, Section 5.81] , m and n need not be positive integers. In particular, for $m=n=\nu$ one has

(2.9)
$$\int_0^1 x^{\nu} (1-x)^{\nu} {}_2F_1(1,2\nu;\nu+1;x)g(x)dx = \frac{\nu\Gamma^2(\nu)}{2\Gamma(2\nu)} \int_0^1 g(x)dx.$$

A simple consequence of (2.9) (just set $\nu = 1$) is that for any function f

(2.10)
$$\int_0^1 f[x(1-x)]dx = 2\int_0^1 x f[x(1-x)]dx.$$

Example 2.3. For $\operatorname{Re}\nu \ge 0$

(2.11)
$$\int_0^1 x^{\nu} (1-x)^{\nu} {}_2F_1(1,2\nu;1+\nu;x) \sin \pi x \, dx = \frac{\Gamma(\nu)\Gamma(1+\nu)}{\pi\Gamma(2\nu)}$$

A related result is the curious algebraic identity: For $m, n = 1, 2, 3, \cdots$ and arbitrary z > -1/2, (0!! = 1)

$$(2.12) \quad \sum_{k=0}^{n-1} \binom{m-1+k}{k} \frac{(2m)!!}{\prod_{l=0}^{m} [2(k+z)+2l+1]} + \sum_{k=0}^{m-1} \binom{n-1+k}{k} \frac{(2k)!!}{\prod_{l=0}^{k} [2(n+z)+2l+1]} = \frac{1}{2z+1}.$$

References

[1] A.P. Prudnikov, Yu. Brychkov and A. Marichev, *Integrals, Products and Series*, Vol.3 [Gordon and Breach Publishers, NY. 1987]

[2] T. H. Koornwinder and M.J. Schlosser, On an identity by Chaundy and Bullard. II. More history, arXiv: 1205.6362v2 [Math.CA] 26 June 2012.

[3] E.C. Titchmarsh, *The Theory of Functions* [Oxford University Press, 1939] Section 5.81.

DEPARTMENT OF PHYSICS, CLARKSON UNIVERSITY, POSTDAM, NY 13699-5820 *E-mail address*: lglasser@clarkson.edu

Received 18 08 2019 revised 27 08 2019