SCIENTIA Series A: Mathematical Sciences, Vol. 29 (2019), 65–67 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 0716-8446 \odot Universidad Técnica Federico Santa María 2019

The Euclidean remainders

Valerio De Angelis

ABSTRACT. The Euclidean algorithm applied to arbitrary real numbers r_{-1} > $r_0 > 0$ is closely related to the continued fraction expansion of r_{-1}/r_0 , but an explicit formula relating the remainders to the digits of the continued fraction is not found in the English language literature. (A German language reference for this is: Oskar Perron: Die Lehre von den Kettenbruechen Band I B.G. Teubner, Stuttgart (1971)). In this note, we give a short and self-contained derivation of an explicit formula for the remainders r_n in terms of continuant polynomials, from which the well-know fact that r_n goes to zero at least as fast as ϕ^{-n} (where ϕ is the golden ratio) follows immediately.

1. Introduction

Given real numbers $r_{-1} > r_0 > 0$, the Euclidean algorithm

$$
a_0 = \left\lfloor \frac{r_{-1}}{r_0} \right\rfloor
$$
, $r_{i+1} = r_{i-1} - r_i a_i$, $a_{i+1} = \left\lfloor \frac{r_i}{r_{i+1}} \right\rfloor$, $i \ge 0$

produces a strictly decreasing sequence $0 \leq r_{i+1} < r_i$ as long as $r_i > 0$, and it does not require r_{-1} and r_0 to be integers. It is well-known (see for example [3]) that riot require r_{-1} and r_0 to be integers. It is wen-known (see for example [5]) that r_i decreases slowest if $r_{-1}/r_0 = \phi = (\sqrt{5} + 1)/2$ (or the ratio of two consecutive Fibonacci numbers in the integer case). This corresponds to the case that all digits of the continued fraction $[a_0; a_1, \ldots]$ for r_{-1}/r_0 are equal to 1, where $[x_0; x_1, \ldots, x_n]$ is defined recursively by

$$
[x_0] = x_0, \quad [x_0; x_1, \dots, x_n] = x_0 + \frac{1}{[x_1; x_2, \dots, x_n]},
$$

and (see [2, p.40]),

$$
\frac{r_{-1}}{r_0} = [a_0; a_1, \dots, a_{n-1}, t_n], \quad t_n = \frac{r_{n-1}}{r_n}, \quad n \geq 1.
$$

Key words and phrases. Euclidean algorithm, continued fractions, continuant polynomials.

65

²⁰⁰⁰ Mathematics Subject Classification. Primary: 11A05 Secondary: 11A55.

66 VALERIO DE ANGELIS

2. Continuant polynomials

The *continuant polynomials* $K_n(x_1, x_2, \ldots, x_n)$ are defined by

$$
K_0 = 1, \quad K_1(x_1) = x_1,
$$

(2.1) $K_n(x_1, \ldots, x_n) = x_n K_{n-1}(x_1, \ldots, x_{n-1}) + K_{n-2}(x_1, \ldots, x_{n-2}), \quad n \geq 2,$

and satisfy the identities ([1, p. 303-304])

(2.2)
$$
[x_0; x_1, \dots, x_n] = \frac{K_{n+1}(x_0, x_1, \dots, x_n)}{K_n(x_1, x_2, \dots, x_n)},
$$

$$
K_n(x_0, \dots, x_{n-1})K_{n-2}(x_1, \dots, x_{n-2})
$$

$$
-K_{n-1}(x_0, \dots, x_{n-2})K_{n-1}(x_1, \dots, x_{n-1}) = (-1)^n.
$$

Using the recursive definition (2.1), we can express the last entry of a continued
fraction
$$
y = [x_0; x_1, ..., x_n]
$$
 as a rational function of y and the other entries, in terms

of continuants:
\n
$$
(2.4) \t x_n = \frac{yK_{n-2}(x_1,\ldots,x_{n-2}) - K_{n-1}(x_0,\ldots,x_{n-2})}{K_n(x_0,\ldots,x_{n-1}) - yK_{n-1}(x_1,\ldots,x_{n-1})}.
$$

The following algebraic property of continuant polynomials is a simple consequence of (2.1), (2.2), (2.3) and (2.4).

LEMMA 2.1. Let $y_0, x_i, i \geqslant 0$, be indeterminates, and define $y_i, i \geqslant 1$, by

$$
y_i = x_i + \frac{1}{y_{i+1}}, \quad i \ge 0.
$$

Then

(2.5)
$$
y_1 y_2 \cdots y_n = K_n(x_1, \ldots, x_{n-1}, y_n)
$$

holds for all $n \geqslant 1$.

PROOF. From the definition of y_i , we have

$$
y_0 = [x_0; x_1, \dots, x_{i-1}, y_i]
$$
 for all $i \ge 1$,

and from (2.4) we find

$$
y_i = \frac{y_0 K_{i-2}(x_1, \dots, x_{i-2}) - K_{i-1}(x_0, \dots, x_{i-2})}{K_i(x_0, \dots, x_{i-1}) - y_0 K_{i-1}(x_1, \dots, x_{i-1})} = \frac{-c_{i-1}}{c_i} \text{ for all } i \geq 2,
$$

where

$$
c_i = K_i(x_0, \ldots, x_{i-1}) - y_0 K_{i-1}(x_1, \ldots, x_{i-1}).
$$

Also,

$$
y_1 = \frac{1}{y_0 - x_0} = \frac{-1}{c_1}
$$

and so

$$
y_1 y_2 \cdots y_n = \frac{(-1)(-c_1)(-c_2)(-c_3)\cdots(-c_{n-1})}{c_1 c_2 c_3 \cdots c_n} = \frac{(-1)^n}{c_n}
$$

(2.6)
$$
= \frac{(-1)^n}{K_n(x_0,\ldots,x_{n-1}) - y_0 K_{n-1}(x_1,\ldots,x_{n-1})}
$$

Substituting

$$
y_0 = [x_0; x_1, \dots, x_{n-1}, y_n] = \frac{K_{n+1}(x_0, x_1, \dots, x_{n-1}, y_n)}{K_n(x_1, \dots, x_{n-1}, y_n)}
$$

in (2.6) , and using (2.1) , (2.2) and (2.3) , the result follows.

3. Convergence of the Euclidean remainders

Theorem 3.1. Let a_n , t_n , r_n be the sequences arising when dividing r_{-1} by r_0 as defined before. Then, if $r_n > 0$,

$$
r_n = \frac{r_0}{K_n(a_1, \dots, a_{n-1}, t_n)} \leqslant \frac{r_0}{F_{n+1}},
$$

where F_n are the Fibonacci numbers.

PROOF. Note that

$$
t_n = \frac{r_{n-1}}{r_n} = a_n + \left\{ \frac{r_{n-1}}{r_n} \right\} = a_n + \frac{r_{n+1}}{r_n} = a_n + \frac{1}{t_{n+1}},
$$

where $\{x\}$ denotes the fractional part of x. So the formula for r_n follows from Lemma 2.1 by substituting $y_n = t_n$ and $x_n = a_n$, and using $t_1 \cdots t_n = r_0/r_n$. The inequality is a consequence of the fact that the continuant polynomials are increasing in each entry, $a_i \ge 1$, $t_n > a_n \ge 1$, and $K_n(1, \dots, 1) = F_{n+1}$.

The remainders r_n will be eventually zero if and only if r_{-1}/r_0 is rational. The theorem, together with the formula $F_n = \lfloor \phi^n / \sqrt{5} + 1/2 \rfloor$ ([1, 6.124]), shows that if r_{-1}/r_0 is irrational, the generating function

$$
f(z) = \sum_{n=0}^{\infty} r_n z^n.
$$

has radius of convergence $\geq 1/\phi$, with equality holding if $a_n = 1$ for all large enough n. We leave to the interested reader to prove that in the latter case, r_{-1}/r_0 will be of form $(a + b\phi)/(c + d\phi)$ for some non-negative integers a, b, c, d, and also to prove that the radius of convergence will be finite if there is some M such that $a_n \leq M$ for all n.

References

- [1] R. Graham, D. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley Longman Publishing Co., 2nd ed., 1994.
- [2] P. Billingsley, Ergodic Theory and Information, Cambridge, 1965.
- [3] J. Borwein, A. van der Poorten, J. Shallit, W. Zudilin, Neverending fractions, Cambridge University Press, 2014.

Department of Mathematics, Xavier University of Louisiana, New Orleans, LA 70125 E-mail address: vdeangel@xula.edu

Received 18 08 2019 revised 28 08 2019