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The Euclidean remainders

Valerio De Angelis

Abstract. The Euclidean algorithm applied to arbitrary real numbers r−1 >
r0 > 0 is closely related to the continued fraction expansion of r−1/r0, but an

explicit formula relating the remainders to the digits of the continued fraction is

not found in the English language literature. (A German language reference for
this is: Oskar Perron: Die Lehre von den Kettenbruechen Band I B.G. Teubner,

Stuttgart (1971)). In this note, we give a short and self-contained derivation of an

explicit formula for the remainders rn in terms of continuant polynomials, from
which the well-know fact that rn goes to zero at least as fast as φ−n (where φ is

the golden ratio) follows immediately.

1. Introduction

Given real numbers r−1 > r0 > 0, the Euclidean algorithm

a0 =

⌊
r−1

r0

⌋
, ri+1 = ri−1 − riai, ai+1 =

⌊
ri
ri+1

⌋
, i > 0

produces a strictly decreasing sequence 0 6 ri+1 < ri as long as ri > 0, and it does
not require r−1 and r0 to be integers. It is well-known (see for example [3]) that

ri decreases slowest if r−1/r0 = φ = (
√

5 + 1)/2 (or the ratio of two consecutive
Fibonacci numbers in the integer case). This corresponds to the case that all digits of
the continued fraction [a0; a1, . . .] for r−1/r0 are equal to 1, where [x0;x1, . . . , xn] is
defined recursively by

[x0] = x0, [x0;x1, . . . , xn] = x0 +
1

[x1;x2, . . . , xn]
,

and (see [2, p.40]),

r−1

r0
= [a0; a1, . . . , an−1, tn], tn =

rn−1

rn
, n > 1.
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2. Continuant polynomials

The continuant polynomials Kn(x1, x2, . . . , xn) are defined by

K0 = 1, K1(x1) = x1,

Kn(x1, . . . , xn) = xnKn−1(x1, . . . , xn−1) +Kn−2(x1, . . . , xn−2), n > 2,(2.1)

and satisfy the identities ([1, p. 303-304])

[x0;x1, . . . , xn] =
Kn+1(x0, x1, . . . , xn)

Kn(x1, x2, . . . , xn)
,(2.2)

Kn(x0, . . . , xn−1)Kn−2(x1, . . . , xn−2)

−Kn−1(x0, . . . , xn−2)Kn−1(x1, . . . , xn−1) = (−1)n.(2.3)

Using the recursive definition (2.1), we can express the last entry of a continued
fraction y = [x0;x1, . . . , xn] as a rational function of y and the other entries, in terms
of continuants:

(2.4) xn =
yKn−2(x1, . . . , xn−2)−Kn−1(x0, . . . , xn−2)

Kn(x0, . . . , xn−1)− yKn−1(x1, . . . , xn−1)
.

The following algebraic property of continuant polynomials is a simple consequence
of (2.1), (2.2), (2.3) and (2.4).

Lemma 2.1. Let y0, xi, i > 0, be indeterminates, and define yi, i > 1, by

yi = xi +
1

yi+1
, i > 0.

Then

(2.5) y1y2 · · · yn = Kn(x1, . . . , xn−1, yn)

holds for all n > 1.

Proof. From the definition of yi, we have

y0 = [x0;x1, . . . , xi−1, yi] for all i > 1,

and from (2.4) we find

yi =
y0Ki−2(x1, . . . , xi−2)−Ki−1(x0, . . . , xi−2)

Ki(x0, . . . , xi−1)− y0Ki−1(x1, . . . , xi−1)
=
−ci−1

ci
for all i > 2,

where
ci = Ki(x0, . . . , xi−1)− y0Ki−1(x1, . . . , xi−1).

Also,

y1 =
1

y0 − x0
=
−1

c1
and so

y1y2 · · · yn =
(−1)(−c1)(−c2)(−c3) · · · (−cn−1)

c1c2c3 · · · cn
=

(−1)n

cn

=
(−1)n

Kn(x0, . . . , xn−1)− y0Kn−1(x1, . . . , xn−1)
(2.6)
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Substituting

y0 = [x0;x1, . . . , xn−1, yn] =
Kn+1(x0, x1, . . . , xn−1, yn)

Kn(x1, . . . , xn−1, yn)

in (2.6), and using (2.1), (2.2) and (2.3), the result follows. �

3. Convergence of the Euclidean remainders

Theorem 3.1. Let an, tn, rn be the sequences arising when dividing r−1 by r0

as defined before. Then, if rn > 0,

rn =
r0

Kn(a1, . . . , an−1, tn)
6

r0

Fn+1
,

where Fn are the Fibonacci numbers.

Proof. Note that

tn =
rn−1

rn
= an +

{
rn−1

rn

}
= an +

rn+1

rn
= an +

1

tn+1
,

where {x} denotes the fractional part of x. So the formula for rn follows from Lemma
2.1 by substituting yn = tn and xn = an, and using t1 · · · tn = r0/rn. The inequality
is a consequence of the fact that the continuant polynomials are increasing in each
entry, ai > 1, tn > an > 1, and Kn(1, · · · , 1) = Fn+1. �

The remainders rn will be eventually zero if and only if r−1/r0 is rational. The

theorem, together with the formula Fn = bφn/
√

5 + 1/2c ([1, 6.124]), shows that if
r−1/r0 is irrational, the generating function

f(z) =

∞∑
n=0

rnz
n.

has radius of convergence > 1/φ, with equality holding if an = 1 for all large enough
n. We leave to the interested reader to prove that in the latter case, r−1/r0 will be of
form (a+ bφ)/(c+ dφ) for some non-negative integers a, b, c, d, and also to prove that
the radius of convergence will be finite if there is some M such that an 6M for all n.
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