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The Euclidean remainders
Valerio De Angelis

ABSTRACT. The Euclidean algorithm applied to arbitrary real numbers r_; >
ro > 0 is closely related to the continued fraction expansion of r_1 /7o, but an
explicit formula relating the remainders to the digits of the continued fraction is
not found in the English language literature. (A German language reference for
this is: Oskar Perron: Die Lehre von den Kettenbruechen Band I B.G. Teubner,
Stuttgart (1971)). In this note, we give a short and self-contained derivation of an
explicit formula for the remainders ry, in terms of continuant polynomials, from
which the well-know fact that r, goes to zero at least as fast as ¢~ " (where ¢ is
the golden ratio) follows immediately.

1. Introduction
Given real numbers r_; > rg > 0, the Euclidean algorithm

T

To

J, i>0
Tit+1

o |
ao = | — | Ti+l = Ti—1 — TG, Qi1 =
produces a strictly decreasing sequence 0 < r;41 < r; as long as r; > 0, and it does
not require r_y and 79 to be integers. It is well-known (see for example [3]) that
r; decreases slowest if r_1/rg = ¢ = (/5 + 1)/2 (or the ratio of two consecutive
Fibonacci numbers in the integer case). This corresponds to the case that all digits of
the continued fraction [ag;aq,...] for r_1/rg are equal to 1, where [xg;x1,...,x,] is
defined recursively by

1
[ﬂfo]:xo, [.To;ﬂfl,...,mn]:;po+'—7
[T1; T2, ..., Ty]
and (see [2, p.40]),
E:[ao;a17...7an717tn]7 tn: Tn717 ’I’L>1
To .
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2. Continuant polynomials

The continuant polynomials K, (x1,xs, ..., x,) are defined by
K0:17 K1($1)2x17
(2.1) Kp(z,...,zn) = o Kp—1(x1,. .o, 2p1) + Kpo(z1, ..., Tp—2), n =2,
and satisfy the identities ([1, p. 303-304])

Kpy1(zo, 21,0, 2p)
(2.2) [Xo; 1, .. xn] = Kootz
Kn(x(), e 7xn—1)Kn—2($17 e ,J}n_g)
(23) — nfl(.%'o7 PN ,xn,Q)Kn,1($17 PN ,,’L‘nfl) = (—1)”.
Using the recursive definition (2.1), we can express the last entry of a continued
fraction y = [zo; 21,...,2,] as a rational function of y and the other entries, in terms

of continuants:
K, _ ooy Tp_o) — Ky ey Ty
(2.4) £, = Yy 2(my z 2) 1($0 x 2)_
Kn(xm s 71:71—1) - yKn—l(-Tla s 7'rn—1)
The following algebraic property of continuant polynomials is a simple consequence
of (2.1), (2.2), (2.3) and (2.4).

LEMMA 2.1. Let yg,x;, © > 0, be indeterminates, and define y;, i > 1, by

1 .
Yi = X; + , 12 0.
Yit+1

Then

(25) Yi1Y2 - Yn an($1,-~-,In_1,yn)
holds for all n > 1.

PROOF. From the definition of y;, we have

Yo = [xo;T1,. .., w1,y foralli>1,
and from (2.4) we find
- YoKi_a(x1,...,xi2) — Ki_1(x0,...,T_2) Z TG Al )
Ki(zo,...,xi1) —yoKi—1(z1,..., i 1) Ci
where

¢ = Ki(zo,...,xi—1) —yoKi—1(z1,. .., 2i—1).

Also,
1 -1
Y1 = =—
Yo — To C1
and so
—1)(—c1)(—c2)(—c3) - (—cn— 1"
sy~ D)) es) (o) ()
C1C2C3 - -+ Cpy Cn
—1)"
(2.6) - (=1

Kn(‘r07 e vxnfl) - yOanl(l'la ey xnfl)
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Substituting
_ . _ Kn+1(x07x17"'7xn—17yn)
Yo = [x()yxla-'-axn—layn] B Kn(xla"'v‘rnflayn)
in (2.6), and using (2.1), (2.2) and (2.3), the result follows. O

3. Convergence of the Euclidean remainders

Theorem 3.1. Let a,, t,, 7, be the sequences arising when dividing r_; by rg
as defined before. Then, if r,, > 0,
To < To 7
Kn(al,.. .7a,n_1,tn) Fn+1
where F,, are the Fibonacci numbers.

rn =

PRrROOF. Note that

Tn—1 Tn—1 Tn+1 1
tp, = - :an+{n }:an+ - =an + ’
T'n Tn T'n tn+1

where {z} denotes the fractional part of . So the formula for r,, follows from Lemma
2.1 by substituting y,, = t, and x,, = a,, and using t; - - -, = 79/7n. The inequality
is a consequence of the fact that the continuant polynomials are increasing in each
entry, a; > 1, t, > a, > 1, and K, (1,--- ,1) = F41. O

The remainders r,, will be eventually zero if and only if r_; /¢ is rational. The
theorem, together with the formula F,, = |¢"/v/5 + 1/2] ([1, 6.124]), shows that if
r_1/70 is irrational, the generating function

f(z) = Z Tz’
n=0

has radius of convergence > 1/¢, with equality holding if a,, = 1 for all large enough
n. We leave to the interested reader to prove that in the latter case, r_;/rg will be of
form (a+bp)/(c+ do) for some non-negative integers a, b, ¢, d, and also to prove that
the radius of convergence will be finite if there is some M such that a,, < M for all n.
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