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New closed forms for a dilogarithmic integral, related
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ABSTRACT. In this study, we present a new closed form for the generalized integral

17
/ Liz2(2) In(1 + az) dz,
0 4
where a € C \ (—oo,—1) and Liz(z) is the dilogarithm function. This gener-
alization is achieved by leveraging our established findings in conjunction with
Valean’s results. Furthermore, we provide explicit closed forms for associated in-
tegrals, prove a transformation formula for double infinite series, expressing them
as the sum of the square of an infinite series and another infinite series. We utilize
this relationship to derive a novel closed form for the generalized series

oo C(m7 rk;s)
kz::l (rk —s)m ~’

for ®(m) > 1, r,s € C, where r # 0, rk # s, for any positive integer k, and ((s, 2)
denotes the Hurwitz zeta function. Utilizing Hermite’s integral representation for
¢(s, 2), we derive a family of integrals from this series.

1. Introduction

In this paper, we provide a new closed form for the integral
1 1.
L In(1
(1.1) / Lis(2)In(1 +a2) ;
0 z

where Lis(z) denotes the dilogarithm function, defined as [1, (25.12.1)]

x  _k
. z
Liz(z) = g w2 |z] < 1.
k=1

Our approach entails the transformation of integrals into infinite series involving
harmonic numbers, followed by the subsequent evaluation of these resulting series.
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Through this method, we not only determine a closed form for the aforementioned
integral but also discover a closed form for
e o] rk+r—s
m, TE=2
ZM, Rm>1Ar,seCr#0,rk+#sVkeN.
(rk —s)™
k=1
Utilizing Hermite’s integral representation for (s, z), we derive a family of integrals
from this series. Examples of such integrals are:

/OO x dx + 7/00 oc dx
o @@ 2 )y @ e )

+1/00 x der}/OO v de+---
3)y 24922 1) 4, (2+16)2(e2 —1)
o ((3)
T 288 47
> T 1 [ T
/0 (4x2+1)2(62m—1)d”§/0 G v o - %
+1/OO z dx+1/oo z dx_|_...
5J, (422 +25)2(e2™ — 1) 7)o (422 +49)2(e2r — 1)
(e )
T 1024 128

These integrals do not appear in existing literature. Throughout this work, H,, rep-
resents the nth harmonic number, defined as

Hn:il, n €N,
k:lk

¥m—1(z) represents the polygamma function, defined as [1, §5.15],

oo

Ym-1(2) = (=)™ (m =1y

k=0

1

——— m=2,meN z¢ —Np,
(k+ 2)m % ~No

and ((s, z) represents the Hurwitz zeta function, defined as [1, §25.11]

oo

C(saz)zz(niiz)s, Zg—No,%S>1.

n=0
By incorporating Valean’s closed form for
11
L 1
/ Mdz, a € C~ (1,00)U{0},
0 1—-az
alongside our derived closed forms for

1 _ 1 2
(12) / lnzln(1+c;z)ln(l z) d. / Inzln il+az) dz,
0 0

a€CN (—o0,—1),
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we present a generalized version of (1.1) in the form

1 -
L In(1
(1.3) / Lis(2) In(1 + az) dz, a€C~ (—o0,—1).
0 z
The two integrals in (1.2) are equal when a = —1. The simplest evaluation of (1.3)
occurs when a = —1. In this case, we have
17; 4
Lis(2) In(1 — 2) T
1.4 ———dz = ——.
(14) /0 2 T

The exclusion of (1.3) for a € (—o0,—1) stems from the observation that if a €
(—o0, —1), the integral diverges at a certain point within the integration domain. To
illustrate this, set a = —b, where b € (1,00), and notice that for all values of b in this
interval, there exists a unique z = % € (0,1) such that
Li In(1-10
(1.5) Lip(z)In(1 =b2)
z

In summary, the results established in this article are outlined as follows. In Section
3.1, we present a closed form for (1.1) using known results. We also establish the rela-

tionship 277 (SIE)ICS _ fl Lis(2) IZH(HZ) dz. We begin our exploration by introducing

0
a novel generalization of (1.1). Additionally, we provide generalizations for related
k k
integrals. Furthermore, we offer a representation for the series > 77 ; (_1)# that

allows us to provide the generalization (1.3) for a € C ~\ (—o0,0] while avoiding log-
arithm of negative real numbers. Theorems 10 and 12 are not new, as we use our
established results to provide a new proof of Jonquiere’s inversion formula for order 4
and arguments —% and —*5. The closed forms presented in Theorems 3-9 and 13-20
are new and have not been presented elsewhere in the literature. In Section 3.2, we
introduce a transformative approach for double infinite series, enabling us to express
them as sums of the square of an infinite series and another infinite series. We apply
this theorem to derive novel generalized identities. The Computer Algebra System
(CAS) software employed for result verification throughout this paper is Mathematica
13.

2. Notations and Definitions

In this manuscript, we employ the following abbreviated notations: B, represents
the Bernoulli numbers [1, §24.2(i)], E, represents the Euler numbers [1, §24.2(ii)],
v = 0.5772156649 represents Euler’s constant, G = Z;’;O % represents Cata-
lan’s constant (G ~ 0.9159655941), while e ~ 2.71828182845 stands for Euler’s num-
ber. We define Ny := NU {0} as the set of non-negative integers, where nNj denotes
all elements in Ny multiplied by n. Additionally, Z, Q, R, and C represent the sets of
integers, rational, real, and complex numbers, respectively.

We denote the gamma [1, (5.2.1)], digamma [1, (5.2.2)], tetragamma, pentagamma,
and hexagamma functions [1, §5.15] of argument z as IT'(z), ¥(z), ¥2(z), ¥3(z), and
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14(2), respectively. Here, ¢, (z) is the polygamma function, defined as the n-th deriv-
ative of InT'(z), and n € Ny. The digamma function can be expressed as [1, §1.7(6)]:

= 1 1
w(z)—_’}"‘v_kzz()(m—]m), ZE(C\—N().

For positive integer values of z, the digamma function simplifies to [2, §1.7.1(9)]:

(2.1) Pk+1)=—y+ Hp, keN.
The recurrence relation for the digamma function is given by [1, (5.5.2)]:
1
(2.2) Uz +1) = () + 1
The duplication formula for the (z) is [1, (5.5.8)]:
1
(2.3) P (Z + 2) =2¢(2z) —¢(z) —In4, z¢€ C~ —Ny.
The Lerch transcendent is defined as [1, (24.14.1)]:
o0 Zn
D(z,8,a) = ;m, 2| <1,Rs>1,a ¢ —N,.

The polygamma function can be expressed as ¢, (2) = (=1)""tn!®(1,n + 1, 2), where
n € N. The Dirichlet eta function is defined as n(n) := ®(—1,n,1), where ®n > 0
[1, §1.12(2)]. The Riemann zeta function [1, §25.2] and the Hurwitz zeta function [1,
§25.11] are, respectively, defined as:

(=L =y

—ns’ ’ — (n+2)*

where z € —Ny, Rs > 1. The domain $ s > 1 of the Riemann and Hurwitz zeta func-
tions can be extended to s € C~ {1} through analytic continuation, using for instance,
the Hermite integral representation for the Hurwitz zeta function [1, (25.11.29)]

N °° sin (sarctan (z/2))
(24) ¢(s:2) = SR 2/0 (22 + 22)% (€27 — 1)

The relationship between the Dirichlet eta function and the Riemann zeta function
is given by n(n) = (1—2'"")((n) [2, §1.12(2)]. The polylogarithm function [1,
§25.12(ii), §25.14.3], Lis(z), is defined as: Lis(z) = 2®(z, s,1), where Rs > 1, |z] < 1.
The dilogarithm function, Lis(z), has the integral representation [1, (25.12.2)]

Fln(l —t
(2.5) Lis(z) = 7/ ¥ dt, zeC~(1,00).
0
The domain |z| < 1 can be extended to the entire complex plane through analytic
continuation. This can be achieved using, for instance, the integral representation |1,
(25.14.6)]

1 00 pttl * sin (tlnz — tant
Lis(z):fz—l—/ Zidt—%/ sin (¢1n 2 — s arctan )dt, R(s) > 0if z € C\[1, 00).
0 0

(1+¢)s (1 —|—t2)% (€27t — 1)
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Throughout this work, we utilize the property that Lis(z) is defined for all complex z.

3. Results

In this section, we present the main findings and outcomes of our study. We begin
by deriving a closed form for (1.1) using known results. Afterwards, we present a novel
generalization of this integral.

LEMMA 1 (Valean). The following results are valid:

> Hk 7T4
(3.1) dom =y

k=1

> H ot 7¢(3)  7In2¢(3)

0o 4

Hop_1 N R In*2  7In2¢(3) . (1

3.3 T - —Liy (=
(3:3) ;(%-1)3 B 24 8 “\2)°
3.4 Hop _ M Ty ea 2 8Lis (= ).
(34) 2o 15 3 +3+HC()Jr M2

Proof. The first series (3.1) follows from [3, §6.19, pp. 601, (6.149)] for the case
p = 3. Using Hy, = Hyy1 — %_H in [3, §4.19, pp. 420, (4.102)] for the case p = 3
and reindexing, the proof of (3.2) is complete. Adding (3.1) to the closed form of
Sy " H = provided in [4, §6.52, pp. 502], the proof of (3.3). Subtracting both
series, the closed form of (3.4) is complete. O

REMARK 2. The closed form for (1.1) is

! Lis(2) In(1 + 2) n*2  72m*2 a* 7In2¢(3) 1
. 2 T = - 4 oLy (=)
(3:5) /0 2 T2 2 e 4 oM (2>

Proof. By utilizing the series representation of Lis(z) for |z| < 1, we can express (1.1)
as

(3.6) /01 % i /1 2 In(1 + 2) dz.
k=

Upon integrating term by term, we obtain
(3.7)

! 1n2 In2 1 k+2 k+1
Sh—1
/0 n(1+2)dz k‘/ 1+2 dz = k 2k<w< 2 ) 1/)( 2 ))

Applying (2.3) and subsequently employing (2.1) in (3.7), we derive

1 H,—H:e
(3.8) / A7 n(1 4 2)dz = TQ
0
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Substituting (3.8) into (3.6) and applying (2.1) and (2.3) after splitting into odd and
even parts, we obtain

/1 Lis(2) In(1 + 2) & — i Hy — Hy
0

z P k3
(39) & 7 20(3) < 2H. H
k n 2k+1 — Hy,
— g4 LN e (M) N 2ok T Tk
+8; BT g D (2k + 1)3
Reindexing the series (3.2), we have
— H; 7 7ln2
1 _ e T .
(3.10) Z@k+1pP 64 4 @)

Substituting (3.1), (3.3), and (3.10) into (3.9), we successfully conclude the proof of
(3.5). Alternatively, we can employ the series representation of In(1+ z) for |z] < 1 to
establish the proof of (3.5). This approach yields

! Lig(2) In(1 + 2) o (—DFL a2 Hy\ ot s ()R,
[ E A () E e

o X e R Tl w
(3.11) - L=
S e D15
N k3 k3 4 k3
k=1 =1

By substituting (3.4) into (3.11), we readily conclude the proof of (3.5). Notably, this

approach appears to be faster, as we immediately recognise % as the closed form of

o1 i 0

3.1. Generalization of the dilogarithmic integral and related integrals.

In the following theorems, we provide the generalization (1.3), and the generalization

of integrals related to (1.3). The closed forms for integrals presented in Theorems 3-9

are new and have not been presented elsewhere in the literature. In these theorems,
we avoid computations of logarithm of negative real numbers.

THEOREM 3. Let a € C\ (—o0,—1). Then
(3.12)
/1 InzIln(l + az)In(l — 2) ds 4+ 1 /1 InzIn?(1 + az2) (Liz(—a))® =2
0 0

z i 2

z - 2 + ?LQ(_a)

— 2Liy(—a).

! Lia(2) In(1 1 (YInzIn%(1 2
(3.13) / Mdz+§/ Mdz:_%w_mm_a).
0 z 0 z

Proof. In an effort to circumvent the computation of logarithm of negative real num-
bers, the initial part of the proof addresses the case where a € C\ (—00,0), while the
subsequent section pertains to the scenario where a € C\ (—o0, —1) U (0, 00). In both
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cases, it follows that a € C \ (=00, —1). Now, we begin by performing integration by
parts, resulting in
(3.14)
/1 Lis(2) In(1 4 az) F /1 InzIn(1 + az)In(l — 2) Qs — a/l In z Lis(2) &
0 0 0

z z 1+az

Valean employed the Cauchy product of two series [5] to derive [3, §3.49, pp. 335,
(3.333)]

a Hk > kg 2. aF
(3.15) (Lis(a _42 +2)° —6Zﬁ, a€C,lal <1
k=1 k=1

Utilizing (3.15), Vélean [3, §1.49, (1.218)] provided the closed form for the second
resulting integral in (3.14), with a in (3.14) substituted with —a. This yields
(3.16)

/1 InzLip(2) . (Lis(~a))®  7*Lis(—a) 3Lis(-a)
0

z =

— -1 .
1+az 2a 3a a » @ € Cx (o0, ~1U{0}

At this point, our focus narrows down to obtaining an expression for the first resulting
integral in (3.14). By carrying out term-by-term integration, we deduce

(3.17)
/ Inzln(1+ az)In(1 — 2) :i )kt k/ ' nzIn(l — 2)dz
o 0

z

k kkﬁ7+_§§i k k¢l(>

k=1 k=1

By implementing the notation change Hr(f) = 712/6—11(n+1) in (3.15) and rearrang-
ing, we have
(3.18)

o (=DFay (k) w* . ) ka
kle: ngg(—a)—QLu(— )—§(L12 —1—22
Upon substituting (3.18) into (3.17), we derive

/1 InzIn(l + az)In(1 — 2) ) 2
0

- dz = —3Lis(—a) + E Lis(—a) — % (Lis(—a))?
(3.19)

We employ the relationship [3, §4.6, pp. 504]

— Hp ;, W’(1-p)
- C,lp| <1,p#0,1.
il T p € C,|p| p#

(3.20)
k=1
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By substituting p with —p in (3.20), integrating over the interval from p = 0 to z, we
deduce

o~ (1), L [* (1 +p)
3.21 2l = f/id C N (=00,0) U (1, 00).
(3:21) ,; e 2 5 4 2eCN (00U (00

Subsequently, we perform a change of variable from z to ¢ in (3.21), divide by ¢, and
integrate once more from t = 0 to a, resulting in

0 k:+1H 1 1
(3.22) Z T Bkt — // n +p dpa.
k=1

Substituting [4, §1.4, pp. 3, (1.9)] into (3.22) and reindexing the series on the left-hand
side, we arrive at

23)
EREVES R a n’
(1)k3Hk_/0 1<L13(t)C(3)+1(13+t) L13<1_1m>

I B

+1In(1 4+ ¢) Liy <1> — 1lntln2(1 —|—t)) dt, a€C~(—00,0)U(1,00).

14t 2
Through integration by parts, we obtain these two generalized results:

(3.24)

/Oa ¢(3) - Lt13 (1+t> dt =Ina (C(3) — Lis <1Jlra>> —Inaln(1 + a) Liy <1J1ra)

_Li2<141ra>L12( a) +Inaln(l + a) Lig(—a)

2

- %IHQ(l +a)Lis(—a) + = (Lis(—a))? + =% 1n(1 + a)
Ina , 5 1 [*In®(141¢)

~ 314 a) - - dt
3 In°(1+a) - ¢ ; . 7

. 1 . .
= —Liy (M) Liz(—a) + Liz(—a)Inaln(1l + a)

1 . 9 ln2(1—|—a) .
b3 (Wis(-a)* - D gy )

a .3 a 2
B 1/ In®(1 +¢) dt+/ Intln®(1+t) dat.
0 0

2 t t
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By employing (3.24) and (3.25) within (3.23), we obtain

i (—1):# — _Lis(—a)+Ina (L13 (1) - g(3)) +Inaln(l +a)

— 1+a
In*(14+a) Ina
(3.26) Lis [ —— ) $ mal( —_—
xLiz | 11 +Inaln(l +a) 3 5
1 ["Intln®(1+1t)
= —=dt.
+ 2/0 t

Utilizing [4, §1.4, pp. 3, (1.9)] in the last integral in (3.26), we arrive at

a 2
}/ Mdt —Ilna (g(g) — Lis (1>> + 11r12a1r1(1+a)
0

2 t 1+a 2
(3.27) — llnalng(l +a) —Inaln(l + a) Liy ( ! )
3 14+a
L1 /1 IntIn?(1 4+ at) i
2 Jo t
Substituting (3.27) into (3.26), we deduce

(3.28)

> (_1)FH,.a¥ 1 [fInzln?(1
Z()TW:LM(—G)_i/ Mdz’ @ €Ex (me0, 0 Ul o).
k=1 0

Likewise, for a € C \ (—00,0] U [1,00), we obtain using (3.20)

“Inzn?(1 - 2) ) . > Hpa® > Hpa*
(3.29) /0 — dz = —2InaLis(a)+2 L14(a)722 13 +2Ina TR
k=1 k=1
By making use of [3, §4.6, pp. 399, (4.36)]
— H 1
(3.30) ]72’“2’“ = ((3) +Lis(1 = 2) In(1 — 2) + Lis(2) — Lig(1 - 2) + 5 In 2 In?(1—2),
k=1
in (3.29), we deduce
o~ Hya" 1 ('Inzn®(1—
(331) 3 - =Liga) -5 / 205 4, g e (<0000 U (Loo).
k=1

Substituting a with —a in (3.31), we once again arrive at (3.28). However, this time,
(3.28) is applicable for a € C \ (—o0, —1) U (0,00). Further substituting (3.28) into
(3.19), we derive

/1 Inzln(l+az)In(1 — 2)
0

7T2 1 2
dz = —2Liy(—a) + — Lis(—a) (Lig(—a))

6 2
(3.32) ¢ L gy
_7/ nzIn*( —l—az)dz.
2 Jo z

Rearranging (3.32) concludes the proof of (3.12). Finally, by substituting (3.16) and
(3.32) into (3.14), we complete the proof of (3.13). O
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REMARK 4. In Theorem 3, we have the following special values:

1 Inzln(l+ 2)In(1 — 2) 1 ! lnzln2(1+z) 7
3.33 Lol [zl +z)
( ) /O z af 2 /0 z 480’
! Lig(2) In(1 + 2) 1 [t InzIn®(1+ 2) é
(3.34) [, L e les),
0 z 2 Jo z 240
! Lig(2)In(1 — 2) 1 [ Inzn?(1 - 2) rt
3.35 A A S—_— A | Z —rm v Mgy = -
(3.35) / : e

THEOREM 5. Let a € C\ (—00,0]. Then

UnzIn(l + az)In(1 — 4 (Liy(—a))® =% _ . )
/Onzn( ‘;Z) n( Z)dz:—g—o—i( 12(2a)) +%L12(—a)—L14(—a)

2 1 1
+ %an(l +a)+ glnalng(l +a)— Zln4(1 +a)

1 a
In(1 Lis [ —— ) + Lig [ ——
siva (1 () + 1 (155
1 a
Lig (—— ) +Lig (2.
" 14(1+a>+ 14<1+a>

Proof. We establish the proof by evaluating the second integral in (3.12). By algebraic
substitutions, we have

(3.36) /”mm%Hw@®/“hm—am%-m%_mmﬁzd
0

z 1 z(1—2)

1+a

zZ.

For the first resulting integral, we have

1 _ 2 19,2 _ = 1n2 _
/ In(1—2)In° 2 :/ In” z1n(1 — 2) dz—/H In” z1n(1 — 2) &
0 0

1 z(1—2) z z

(3.37) i )
n /17«1 InzIn?(1 — 2) &
0 Z

Using (3.30) and [3, §4.6, pp. 399, (4.38)]

(3.38)

> Hk; k_7r4 7T2 2 1 4 1 3
kﬂﬁz f%-q—g(?,)ln(l z)—i-ﬁln (1 z)—{—ﬂln (1-2) élnzln (1-2)

—In(1 — 2) Lis(2) + 2 Lia(2) — Lia(1 — 2) + Lis (L)
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in (3.29), we deduce
(3.39)

“Intln?*(1 —t) m 2, 1. 4
/0 fdt——g—%(i’))ln(l—z)—gm (1—2)—Eln (1-2)

+ %mzln?’(l —2)+2In(1 — 2) Liz(2) — 2 Lig(2) + 2 Lig(1 — 2)
—2Liy (Zi1> +2In2¢(3) +2InzIn(1 — 2) Liz(1 — 2)

—2InzLiz(1—2) + ln22:ln2(1 —z).

The following results are obtained through straightforward term-by-term integration

1
T In® ; 1
/1+ iy, P (Ina —1In(1 + a)) ln‘3(1 +a) —3ln2(1 + a) Liy ()
(3.40) 7o lte

—z
—6In(l+a)Li L —6Li 1
*\1+a \1+a)’

Fa 1112(1 — Z) ds — 2 B . <1> B 2
/ —, de= ¢(3) —2Lis T a + (Ina—In(1+a))In“(1 + a)
(3.41) 70 .

—21In(1 Lig (| — | .
n(l+a) 12(1+a>

By replacing z with a/(a + 1) in (3.39) and employing and (3.40), and further sub-
stituting the latter in (3.36) while taking into account (3.41), we ultimately arrive
at

(3.42)
1 2 4 2
In zIn"(1 2 1
/0 Mdz = Z—5 - 7%lnz(l +a)— glnalng(l +a)+ 51114(1 +a)
(1 +a) (Lis  —— ) + Lis [ —— 2 Lis(—a)
n a 13 1+a 13 1+a 14 a
2Liy (— 2Liy ([ — € C~ (—00,0]
—2Liy [ —— ) —2Liy | —— — .
4 1 Ya 4 1 Ya ) a ~N o0,
Substituting (3.42) into (3.12), we thereby conclude the proof of Theorem 5. O

THEOREM 6. Let a € C~\ (—00,0]. Then

(3.43)

17 4 2 2
L In(1 +
/0 M dz — ,% — % Lis(—a) + 2 Lig(—a) + 7{2 In*(1 + a)

1 1 1
+ glnalns(l—i—a) — Zln4(1+a) +1In(1 + @) Lis (1+a)

a 1 a
In(1 Li —_— Li _ Li — .
Tl +a) 13<1+a>+ 14<1+a>+ l4<1+a>
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Proof. Through the substitution of (3.42) into (3.13), we establish the proof of The-
orem 6. 0

REMARK 7. Considering (3.19), we substitute z = —a in (3.38), resulting in
(3.44)

> (_].)kaak - 7T4 71—2 2 1 4
kz::l B = gp TGl +a) + S’ +a)+ (14 a)

_ é In (=) n3(1 + a) — In(1 + @) Lis(—a) + 2 Lis(—a) — Lis(1 + a)

a
Lig [ —— | .
+ 14(a+1)

While Valean impressively provided different representations for (3.30) and (3.38), it
is worth noting that the logarithms on the right-hand side of (3.30) and (3.38) avoid
negative values for z € C~\ (—o00,0] U [1,00). Consequently, (3.44) avoids logarithms
of negative numbers for a € C \ (—oo,—1] U [0,00). In the other region where a €
C \ (—00,0] U [1,00), by employing the relationships (3.28) and (3.42) that we have
established, we arrive at

oo kg, ok 4 2

Z £ Hia? =T 4 7T—1112(1 +a)+ élnaln?’(l +a)+ %1114(1 +a)

k3 90 12
k=1

(3.45) +1In(1 + a) <L13 (141ra) + Lis <1ia>) +2Liy(—a)

1 a
Liy | —— Liy | ——
s () + 1 ()

which is valid for all z € C, where |z| < 1 and z # —1,0. Similarly, from (3.21) and
[4, §1.4, pp. 3, (1.9)], we derive

(3.46)
;mzk+l _ 7((3) + §1n3(1 +Z) + Lis (1+Z> +ln(1 +Z)L12 <1 +Z>

1
~3 InzIn%(1 + 2).

Reindexing the series in the left-hand side of (3.46), we have

S ERY o0 4Nk
(3.47) > ((kll f)[; =3 L He 1]32 He i Lig(—z).
k=1 k=1

Substituting (3.47) into (3.46), we obtain
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- (_1)ka k 1.3 . . 1 . 1
ZTZ :((3)—§ln (14 2) + Liz(—z) — Lis 152 —1In(1 + 2) Liy 152
+ %11121112(1 + 2).

The representations (3.45) and (3.48), applicable to a € C ~\ (—o0,0] U [1,00),
circumvents the need to compute logarithms of negative numbers. The advantage of
(3.45) over (3.44) lies in its application to the evaluation of the integral in (3.19).
Specifically, when considering avoidance of logarithms of negative numbers and the
analytic continuation of the polylogarithm function, (3.45) allows for a more general
result, extending the domain of the integral from C~\ (—o0,0]U[1,00) to C~ (—o0,0].
Conversely, (3.44) still restricts the domain of the integral to C \ (—oo,—1] U [0, 00),
avoiding logarithms of negative numbers while still accommodating the analytic con-
tinuation of the polylogarithm function. In light of these observations, we reveal two
additional closed forms for the integrals in Theorems 5 and 6 in the following theorems.

THEOREM 8. Let a € C~\ (—o0, —1] U[0,00). Then

(3.49)
/1 InzIn(1+ az)In(l — 2) m 72 1
0

: dz = 90 " Liy(—a) + 3 Lis(—a) — 3 (Liz(—a))’

2
1
+(@) (1l +a) + o0’ (L +a) + o7 n*(1+a)

_ é In (—a) In3(1 + a) — In(1 + a) Lis(—a)

—Li4(1+a)+Li4( a )

a+1

Proof. Upon substituting (3.44) into (3.19), we conclude the proof of Theorem 8. [

THEOREM 9. Let a € C~\ (—o0, —1] U [0,00). Then

(3.50)
/1 Liz(2) In(1 + a2) 4 72
0

2
_ T T ™4 2
o dz = 90 + 2 Lig(—a) G Liz(—a) +¢(3)In(1 + a) + 2 In“(1+a)

1 1
+ o4 In*(1+4a) — G In (—a)In®*(1 +a) — In(1 4 a) Lis(—a)

a
— Liy(1 Lig (—— .
is(L+a)+ 14(a+1)
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Proof. Considering (3.31) and (3.44), we infer the following closed form
(3.51)

1 2 4 2
InzIn?(1 1
/ wdzz_% _2§(3)1n(1+a)—%1n2(1+a)——ln4(1+a)
0

z 12
1
+3In(—a) In®(1 4 a) + 2In(1 + a) Liz(—a) — 2 Liy(—a)
+2Liy(1+a) — 2Lig (a> . a€C~ (o0, —1]U[0,00).
a+1
By substituting (3.51) into (3.13), we conclude the proof of Theorem 9. O

In what follows, we apply our established identities to prove of Jonquiere’s inversion
formula for specific cases.

THEOREM 10 (Jonquiere). Let a € C\ (—o0,—1]U[0,00). Then
(3.52)
-1 4 1 2 1
Liy (Z ) + Liy (Z) = —% ——ln?zIn*(1—2)— T In?(1—2) — —In*(1—2)
z

z—1 4 12 24
2 1 2
+ 7rFlnzln(l —2)+ 6lnzln3(l —2)— %11122

1 1
+ 61n3zln(1 —2)— —1In*z

24
Proof. On the transformation z — 1 — z, we have
(3.53)
“lntln®*(1—t " Intln®(1 -t 1 "Intln®(1—¢
/LHM/ L()dt:,ln%hg(l,ZH/ Intln"(1-¢)
0 t o t 2 o t

This yields

“Intln?(1 —t) =% Int1n?(1 —t) 7. P
3.54 —dt —— —~dt=——+-In"zIn*(1 — 2).
(3.54) /0 . +/0 . 50 Talzn (1-2)
Utilizing (3.39) on the left-hand side of (3.54), we conclude the proof of Theorem

10. 0

REMARK 11. Let us define a function F(z) as

z 2 o
Fz) = Intln“(1 —1¢) dt.
t
0

With this notation, (3.54) can be expressed as

71'4

1
(3.55) F(z)—|—F(1—z):—f+§1n2zln2(1—z).
The identity (3.52) is not new; however, we can refer to Theorem 10 as a rediscovery,
as the proof we provide is novel. Theorem 10 can be derived by substituting 4 for m and
—5 for z in Jonquiere’s inversion formula [2, §1.11.1, pp. 31, (16)]. Jonquicre’s inver-
sion formula is derived from the Lerch transformation formula [2, §1.11(7), pp. 29],
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and the Lerch transformation formula is derived using the residue theorem (see [2,
§1.11, pp. 28]). This demonstrates the uniqueness of our proof.

THEOREM 12 (Jonquiere). Let z € C N\ (—00,0]. Then

. 1 . Tt ow? o, In*a
(356) L14 <_a> + L14(—a) = —% - ﬁ In“a — o .

Proof. Define a function G(z) as

1 2
G(a) :/ InzIn*(1 + az) &,
0

z

Now, using (3.36) and (3.37), we can establish the following relationship

4 a In? - e In2 _
G(a)+c(1):_%_/+ B o) g, [T,
0 0

a 45 z z

THa 21 — ™ 21 —
(3.57) +/1+ InzIln“(1 — z) dz+/1+ Inzln“(1 —2) &
0 0

z z

/1 In®2 +Inaln? 2 /1 In®2 —Inaln? 2
— —— —dz — ———dz.

1 z(1—2) o z(1—2)

1+a 14a

By applying (3.55) to (3.57) and subsequently utilizing (3.39)—(3.41) in (3.57), we
derive

(3.58)
Lis (—i) +Lis(—a) + (Inaln(l + a) — In*(1 + a)) (Liz <1Jlra> kb (11&1»

4 2 In’ 2 2
‘%‘%HQG 51 * g mel(i+a) = (14 a) ~2lnal’(l+a)

+In%aln®(1 + a) + In*(1 + a).

Now, applying Euler’s reflection formula [1, (25.12.6)] to the dilogarithms in (3.58), we
conclude the proof of Theorem 12. Additionally, it is worth noting that the inversion
formula can also be derived by substituting 4 for m and —% for z in Jonquiere’s
inversion formula [2, §1.11.1, pp. 31, (16)]. However, this newly presented proof offers
the advantage of avoiding logarithms of negative real numbers. O

3.2. Infinite series involving the Hurwitz zeta function. In this subsection,
we introduce a theorem for double infinite series with symmetric summands and apply
it to derive new identities. The motivation for determining closed forms for these series
stems from the fact that the harmonic series 220:1 %, as presented in Lemma 1, can
also be proven as follows. By utilizing the series expression for ;(k), we initially

obtain

k=1
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Interchanging the order of summation, and then the roles of the dummy variables j
and k, we obtain

oo J 1 oo o0 1 oo k 1
DI B DTl D) Dy
j=1k=1 k=1j=k k=1j=1
Consequently, this leads to
oo oo 1
)Py a2 = SO s = )+ ).
k=1 =k 7 =1 =17

Hence,

— 1 (k C(4) + ¢%(2 Tt
Z (2):() 2) _

Utilizing (3.30), we derive

2
oo 1% —Intln(l —¢) — 2Lis(t) ) In(1 —¢t) 1 201 _
IZ; :§(4)+/ (6 ; ) dt+%/ 7lntlnt(1 D g

k=1
4

T 1 IntIn?( l—t) ™ 11 [,
=— - =—+_-) = “'Intln(l —
5 2/ dt 90+2§ k/t ntln(l—t)dt

0
71'4 H, 1 w 71'4
?_*Z 72

k=1

1
2
THEOREM 13. Let f be an arbitrary symmetric function of two variables such that
(1) if f(k,j) = (=1)**g(k, j), where g(k, j) is positive, and > r, f(k, k) con-
verges, or
(2) if f(k,j) is positive and Zjoil ey f(k,j) converges.
Then Zj’;l oo f(k+7,7) is convergent, and

(3.59) SO kg =5 [ D A+ D F k)
j=1k=0 j=1k=1 k=1

Proof. Interchanging the order of summation, we have

(3.60) DD ki) =YD f k)

=1k= k=1 j=k

<.
—

Next, we interchange the roles of the dummy variables, resulting in

)= 33

k=

Mg

(3.61)

TTMS

.
Il
_
_
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Since by hypothesis f(k,j) is symmetric, it follows that f(j,k) = f(k,j), and thus,
(3.61) can be expressed as

oo J oo k

j=1k=1 k=1 j=1

Combining the two resulting expressions from (3.60) and (3.62), we deduce

(3.63) DD fki) =3 Z Fe, i)+ > f(kR) |,
k=1 k=1

j=1k=1 j=1

\ =

By reindexing the series on the left-hand side of (3.63), we have

S =D D )= e 3)+ 3 Flk )

1 k=1 =1 k=j+1 j=1k=1 k=1

(o olNe o}

(3.64)

Nk

J

Shifting the index in the second series on the left-hand side of (3.63), we obtain

SO rh ) =30 Ut g) = lzzm+zmk

1 k=1 j=1k=1 j=1k=1

(3.65)

M2

J

Upon reindexing the second series on the left-hand side of (3.65) as
DD ICEFN) Z Fk+5,5) =Y fk,k
j=1k=1 j=1k=0 k=1

and rearranging, (3.59) follows. We must now demonstrate the conditions for conver-
gence. To begin with the first condition, let f(k,j) = (=1)**ig(k, ). It is evident
that the symmetricity of f implies the symmetricity of g. Consider the following series

Z D gk, ) =Y gk k) =2 > g(k,J)

=1 k=1 j=1 1<j<k<oo

Since, according to our hypothesis, g(k, j) is positive, we can write

Flk,g) =Y glkk)—2 Y Z Z (., k).

j=1k=1 j=1 1<j<k<oo

By applying the comparison test, we can conclude that > o i1 >orey f(k,j) converges
if Z;i1 f(k,k) converges. As the sum of two convergent series is itself convergent,
we can now deduce from (3.59) that 3222, 3722 f(k + j,j) converges if 3.2, f(k, k)
converges. Moving on to the second condition, assume Zj’;l Y opeq f(k,j) converges.
It is clear that since f(k,j) is positive, we can write

S FhE) Y fhR) 42 Y fha) =YY fk
k=1 j=1

1<j<k<o0 j=1k=1
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By employing a similar argument, we can conclude that >272, 3772 f(k + j,j) is
indeed convergent, provided 72, 372 | f(k,j) converges. O

COROLLARY 14. Let f be an arbitrary function such that
(1) if f(k) = (—1)kg(k), where g(k) is positive, and > p, f%(k) converges, or
(2) if f(k) is positive and Y - | f(k) converges.
Then 32721 > 5o f(k+3)f(4) is convergent and

o0 o0 2 o0

(3.66) DD fk+ih)f (Zf ) + D k)
j=1k=0 k=1

Proof. Taking f(k,j) = f(k)g(j) in Theorem 13, the symmetricity of f(k, ) implies

f(k) = g(k). As such, the proof of Corollary 14 is complete. O

REMARK 15. Corollary 1/ possesses the remarkable property of transforming a
double infinite series into an expression that consists of the sum of the square of an
infinite series and another infinite series. It is worth noting that the results established
in Theorem 13 and Corollary 14 have not been previously presented elsewhere in the
existing literature.

We apply Corollary 14 in the following theorem.

THEOREM 16. Let R(m) > 1, r;s € C, where r # 0, vk # s, for any positive
integer k. Then

b S (e (o)

k=1

Proof. By setting f(k) = (TTls)m in Corollary 14, we conclude the proof of Theorem
16. O

REMARK 17. Theorem 16 does not appear in the DLMF [1, §25.11(xi)] and Prud-
nikov’s book [6, pp. 396-397|, where series involving the Hurwitz zeta function are
discussed.

COROLLARY 18. Let m be any positive integer greater than 1, r,s € C, where
r#0, rk # s, for any positive integer k. Then

= Yot (P50) (=)™ (0n (5 | (m—1)! r—s
(3.68) Z (rj—s)m Toom ( (ml—l)! +(2m )me 1( r ))

j=1

Proof. Theorem 16 reduces to Corollary 18, if we consider m as any positive integer
greater than 1. O

ExaMPLE 1. For any positive integer m > 1, we have

o Vm—1 = me—2m—1 'r2n71 s (m —1)! 3
(369) 2 (4j(1)4m) = (=02 ( (m(f;') T 2m ) Ve (4)) ‘

Jj=1
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For m = 2,3,4,5, we have

S () e Gt e (d)
(370) ; (45 —1)2 = T

e () At T 19¢2(3) s (%)
R Dy 7 T O

S Us (M) wi(E) | ur(3)
(3.72) > @~ * 3072 T 130080°
S (S oo | 1o )

(3.73) a1 == T 3 C(5)—2883C2(5)—m.

(3.74)
= Yom—2 (%) _ ‘EQm—2| 2m—1\ ,_2m—1
;(4],_1)2%1 S (1-2 ) ¢(2m—1)
(1- 227”_1)2 (2m-2)! , E3n2  _am—2
N 8 Cem =) = s ™
(2m — 2)! 3
- mﬂumfs <4> )

where E,, are the Euler numbers.

Proof. Olaikhan [7, §1.20.6, §1.20.7, pp. 62—63] expressed o, (%) in terms of ¥y, (i),
and o, (%) in terms of the Euler numbers F,, with a as a positive integer. By
employing both of these expressions, we derive

3 7T2m—1
(3.75) om—2 (4) = 22m—2 ((1 — 2271 (2m = 2)I¢(2m — 1) + 5 |E2m2> .

By replacing m with 2m — 1 and subsequently substituting (3.75) into (3.69), we
conclude the proof of Corollary 19. 0

THEOREM 20. Let m be any positive integer greater than 1, r,s € C, where r # 0,
rk # s, for any positive integer k. Then
m

S35 e () G ) [ e

k=1 p=0
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Proof. Employing Hermite’s integral representation (2.4) for ((s, z) in Theorem 16,

we have
i 1 (rkr—s)_m N (rk’r—s)l_m
(rk —s)™ 2 m—1
(3.76) k=1
1 r—s 1 r—S5
=—C|2 2m —1 .
2rm<<m’ T >+rm(m—1)c<m Tor )
Define the last integral in (2.4) as
flm,z) = /°° sin (m arc;an (z/(2))) do.
0 ($2 + 22) 2 (62771 _ 1)
By De Moivre’s theorem [1, (4.21.34)], we have
> (cos (arctan (2)) +isin (arctan (£)))™
fim oy [ o () i st ()",
0 (1'2 + 22) 2 (6271'95 _ 1)
where i = v/—1. By the binomial theorem, we have

fm,z) =9 / By (7;) (cos (arctan (£)))” i~ (sin (arctan (2)))" "

(z2 + 22>% (e2m — 1)

Interchanging summation and integration, we have

f(m,z) = \;pi(:) (r;) /Ooo (cos (arctan (£)))”imP (sin (arctan (2)))™ " .

(22 + 22)% (e27 — 1)

x.

Using the trigonometric identity 1 4 tan? 6 = sec? #, we deduce

x z T T
cos (arctan <7)> = ——, sin (arctan (7>> = ——.
z ‘/$2+22 z 4/$2_i_2:2
Therefore, we can express f z) as

zmP

(m.
1.9 =93 () [ oy

p=

Since
SiMP = GelT(m—p) — g (cos (g(m - p)) +isin (g(m - p))) = sin (g(m - p)) J

we conclude that

m—p

377 flm2) = 7;1 (Z;) 2 sin (5 (m 1)) /0 h e Zj)c e

Replacing z in (3.77) with =2 utilizing the latter and (3.76) to derive an integral
representation for ¢ (m, ), and further substituting the result in Theorem 16, we
conclude the proof of Theorem 20. O

rk—s

Since sin (g(m —p)) = 0,41, for integer values of m and p, Theorem 20 can be

rewritten for odd and even values of m, as follows.
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COROLLARY 21. Let m be any positive integer, r,s € C, where r # 0, vk # s, for
any positive integer k. Then

oo m—1 m+p 1 2%m o) CCQ’m—Qp—l d
Z Z 7,2p+1 rk — 5)2m—2p-1 <2p+ 1> /0 (r222 + (rk — 5)2)2m(e27e — 1) z

k=1 p=
9 -5 1 r—s
2 — dm -1, —— | .
47‘6’"C (m r > 2r6m(2m—l)<(m oy )

COROLLARY 22. Let m be any positive integer, r,s € C, where r # 0, vk # s, for
any positive integer k. Then

m+p o2m +1 00 x2m—2p+1 d
ZZ 702p rk 2m 2p+1 < 2p ) /0 (r2x2 + (rk _ 8)2)2m+1(62”’ — 1) xz

k=1 p=0

1 9 r—s 1 T—35
_74r6m+3c <2m—1—17 - >_47’6m+3m<(4m+1’ " >

Theorem 20 reduces directly to an expression in the Riemann zeta function if we set
r=1,s=0and r =2, s =1. This yields the following corollaries.

COROLLARY 23. Let m be any positive integer greater than 1. Then

kzz - ( )Si”(g‘m‘p’)/o T
= 3¢ m) = gy C 2m 1),

COROLLARY 24. Let m be any positive integer greater than 1. Then

co m—1 00 m—p

m @) sin (g(m - p)) /0 (422 + (2k f1)2)m(em &
9—3m—1 (22m71 .
m—1

As in Corollaries 21 and 22, we provide expressions for Corollaries 23 and 24 for odd
and even values of m.

M

k=1 p=0

=272 (9m — 1)2 (% (m) — ) ¢(2m - 1).

COROLLARY 25. Let m be any positive integer. Then

0o m— 1 m+p 1 2m o] p2m—2p—1
d
Z Z k-Qm 2p—1 <2p+ 1> /0 (.232 + k2)2m(62ﬂ—x — 1) x

k=1 p=0

24m 4 4 1
= WBQm - mg(‘lm - 1),

where B,, are the Bernoulli numbers.

ExXAMPLE 2. For m =1, 2,3, we have

il/m v deo T B
kJo (k22 —1) T 288 4
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¢(7)

% dz—) — dr = _
k; ko (a2 +k2)" (e2m — 1) ,;1 K Jo o (22 4+ k2)* (277 — 1) 129600

-2
62 / (22 + k2)° 62”— e Ozk?’/ (22 + k2)° 27”’3—1)(196

m!2 ¢(11)
6 dz = - .
+ st/ x2+k2 (27 1) Y7 3572100 0 10

COROLLARY 26. Let m be any positive integer. Then

ZZ m+p (2m + 1) /OO x2m—2p+1 d
x

2m— 2 “+1 2 2\2m~+1( 27mx __

ok p 2p o (22 +Kk2) (e 1)

= M1 L C(dm + 1)

ExAMPLE 3. For m = 1,2, 3, we have

24’

Mg
> =

0 x 1 [ o3 ¢%(3)
/ 2 k2 3/ onx 1 dxiz E/ 2 k2 3 (o2mw 1 dz = 4
o (z2+R2)7 (e 1) I o (22 R (2T 1)

<01 [ T
5 — dx — 10 / dx
Z k /0 (x2 + k:2)5 (6271'.7; _ 1 Z k3 372 + k2 e2TT 1)

00 0 5 2
+Zi5/ v dx:(()_C(9)7
SR @)t S
X1 [ x < 1 3
7 7/ dx —3 —/ dx
;k 0 (132"‘]‘32)7(62”— kz 3o (22 + k2T (62’”7—1)

21 —
T Zk5/ m2+k2 ezm_ dac ZH/ x2+k2 ezm_l)dx

_Cm )
4 12

COROLLARY 27. Let m be any positive integer. Then

oo m—1 m+p 1 2m [eS] p2m—2p—1 d

Z Z 22p+1 2k— 1)2m 2p—1 <2p—|—1>/0 (4I2 (2/<:— 1) ) ( oz _ 1) xz

- 2—2m—4 (22m _ 1)2
(2m)!2

where B,, are the Bernoulli numbers.

2—6m—1 (24m—1 _

1
B%mﬂAm - 2 — 1 >C(4m - 1)7
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EXAMPLE 4. For m = 1,2, 3, we have
7t ~T¢(3)

> 1 o x
de =
; % — 1 /0 (422 + (2k — 1)2)2(e2m — 1) * ~ 1024 128 °

I 1 oo T
- dx

X w1, @

= x3 78 127¢(7)

1 o0
- 2 E d = — ,
,; (2k —1)? /0 (422 + (2k — 1)2)* (€272 — 1) ¥ T 589824 24576

3 1 /°° x
— E dz
16 =2k —1Jo (422 + (2k — 1)2)° (e2m= — 1)

3

5 Z"o 1 o0 -
2 dx

2 k=1 (zk - 1)3 /0 (4502 + (2k — 1)2)6 (627'r:c _ 1)
i Tt 2047¢(11)

T

o0 1 fe'e)
3 dz = - :
i ; (2k — 1) /0 (422 + (2k —1)2)° (e27r — 1) 235920600 2621440

COROLLARY 28. Let m be any positive integer. Then
$2m72p+1

iz’": (—1)mte 2m + 1 /°° e
pr s 22p(2k _ 1)2m—2p+1 2]? 0 (4l‘2 + (2]{: _ 1)2)2m+1(62mc _ 1)
—6m—4 (24m+1 _ 1)

:2—6m—5 22m+1_1 2 2 2 1 _
( )" ¢F2m+1) Gy

¢(4m+1).

EXAMPLE 5. For m = 1,2,3, we have

3em 1 > x
4 ; 2k -1 /0 (4x% + (2k — 1)2)3 (e2m® — 1) d
- 1 > ? _49¢%(3) _ 31¢(5)
B Z (2k —1)3 /0 (422 + (2k — 1)2)3 (e2mr — 1) = 2048 2048 °

k=1

5o 1 o x
16 ; 2k -1 /0 (422 + (2k — 1)2)5 (€27 — 1) dz
5 1 > a?
2 ; (2k —1)3 /0 (422 + (2k — 1)2)® (27 — 1) a
5 ~961¢2(5) ~ 511¢(9)

S —
=2k =10 Jo (4a?+ (2k—1)2)° (e2mr —1) 131072 262144’

7T o= 1 /°° x
— dz
64 ; 2k—1Jo (422 + (2k — 1)2)7 (e27= — 1)
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35 1 /oo e
16 dx
16 /; (Qk o 1)3 0 (4.’172 + (2]{/’ — 1)2)7 (eQﬂ'x _ 1)

21 5

+

o0 1 Joe) r
2 (2k —1)° /0 (422 + (2k — 1)2)7 (€272 — 1) d

k=
1 /OO 7 Ly 16120C(7) _ 8191¢(13)
k=17 )y (4224 2k —1)2)" (27 —1) 8388608 25165824

—

Mg |

x>
I

1

4. Conclusion

In this work, we have introduced several new theorems that provide closed forms
for generalized integrals and series. Furthermore, we have demonstrated the appli-
cation of our double infinite series transformation formula in deriving new identities,
which have been expressed using well-known numbers such as the Euler and Bernoulli
numbers. One that we find interesting are the simplest cases of Theorem 20:
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Interested readers can further explore the transformation formulas outlined in Theo-
rem 13 and Corollary 14 to potentially uncover additional new results.
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