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Two closed-form evaluations for the generalized
hypergeometric function 4F3(

1
16
)

Arjun K. Rathie a and Mykola A. Shpot b

Abstract. The objective of this short note is to provide two closed-form evalu-

ations for the generalized hypergeometric function 4F3 of the argument 1
16

. This

is achieved by means of separating a generalized hypergeometric function 3F2

into even and odd components, together with the use of two known results for

3F2(± 1
4

) available in the literature. As an application, we obtain an interesting

infinite-sum representation for the number π2. Certain connections with the work
of Ramanujan and other authors are discussed, involving other special functions

and binomial sums of different kinds.

1. Introduction

The generalized hypergeometric function pFq(z) with p numerator and q denomi-
nator parameters is defined by the series expansion

(1.1) pFq

(
a1, a2, . . . , ap
b1, b2, . . . , bq

∣∣∣ z) =
∑
n>0

(a1)n(a2)n . . . (ap)n
(b1)n(b2)n . . . (bq)n

zn

n!
,

where (a)n is the Pochhammer symbol [1] (shifted factorial, with (1)n = n!),

(a)n =
Γ(a+ n)

Γ(a)
=

{
a(a+ 1) . . . (a+ n− 1) n ∈ N;

1 n = 0 ;
a ∈ C .

As usual, p and q are non-negative integers, and the parameters aj ∈ C, j = 1, . . . , p
and bk ∈ CrZ−0 , k = 1, . . . , q, where C denotes the set of complex numbers, Z−0 is the
set of negative integers along with zero.

When p 6 q, the power series (1.1) converges for all finite values of z with |z| <∞.
In the case p = q+1, it converges for |z| < 1 and diverges for |z| > 1. On the unit circle
|z| = 1, the sufficient condition for convergence of (1.1) with p = q + 1 is <(s) > 0

2000 Mathematics Subject Classification. Primary 33C20; Secondary 33C05, 33C90.
Key words and phrases. Generalized hypergeometric functions, Ramanujan-type summation for-

mulas, Clausen function.

27



28 ARJUN K. RATHIE AND MYKOLA A. SHPOT

where s is the parametric excess

s :=

q∑
k=1

bk −
p∑
j=1

aj .

Also, when p = q + 1 and {|z| = 1, z 6= 1}, the series (1.1) converges with −1 <
<(s) 6 0. Analytic continuation can be employed to define the function pFq(z) for z
values outside the convergence region of the series (1.1).1

For more details on generalized hypergeometric function pFq(z) we refer to stan-
dard textbooks [3, 4, 5, 6, 7].

The subject of the present short communication are the special representatives of
generalized hypergeometric functions belonging to the class p = q+ 1 with specializa-
tions p = 3 and p = 4.

The main goal is the derivation of two new closed-form expressions for the function

4F3 with specific argument 1
16 starting from two known evaluations of 3F2(± 1

4 ). It

is interesting that one of these last 3F2 functions, 3F2(− 1
4 ), has been well-known in

mathematics and appeared in the standard reference book by Prudnikov Brychkov
and Marichev [8] as entry 7.4.6.1, while another one, 3F2( 1

4 ), resulted as a by-product
in calculations of certain Feynman integrals by one of the authors in 2010 [9].

Our motivation consists of several components. First of all, (i) it is of primary
interest to obtain explicit determinations of (any) hypergeometric functions. On the
other hand, (ii) we wanted to bring the essentially unknown evaluations (3.2) and (5∗)
from a specific paper in theoretical physics [9] to the broad mathematical community.
We also found it interesting to (iii) discuss some implications of the fusion of sum-
mation formulas (3.1) and (3.2), in particular, the infinite-sum representation of the
number π2 in (3.9).

Finally, it often happens that quite the same mathematical calculations are per-
formed in very different and seemingly disconnected branches of theoretical physics
and mathematics. And it is quite interesting and useful to establish connections be-
tween such differently motivated calculations. Thus, our last motivation’s component
was to (iv) perform a bright comparison of different approaches, functions and forms
of results related to our initial input formulas (3.1) and (3.2). Thus it appeared that
they were implicitly present in Ramanujan’s notebooks, as well as in quite different
modern papers in mathematics and theoretical physics. We hope that our ”excursion”
from Ramanujan to present days won’t be no less interesting for the reader as our main

4F3 results.

2. Even and odd components of pFq(z)

By decomposing the generalized hypergeometric function pFq(z) into even and
odd components and making use of standard identities for the Pochhammer symbol
[1],

(a)2n = 22n
(a

2

)
n

(a
2

+
1

2

)
n

and (a)2n+1 = a 22n
(a

2
+

1

2

)
n

(a
2

+ 1
)
n
,

1Several interesting instances of the analytic continuation of the 3F2 function are provided in

[2].



EVALUATIONS FOR THE GENERALIZED HYPERGEOMETRIC FUNCTION 29

one can easily obtain the following two general results, recorded, for example, in the
reference book by Prudnikov et. al. [8, 7.2.3.42], viz.

q+1Fq

( a1, a2, . . . , aq+1

b1, b2, . . . , bq

∣∣∣ z)+ q+1Fq

( a1, a2, . . . , aq+1

b1, b2, . . . , bq

∣∣∣− z)
= 2 2q+2F2q+1

( a1
2 , a12 + 1

2 , . . . ,
aq+1

2 ,
aq+1

2 + 1
2

1
2 ,

b1
2 ,

b1
2 + 1

2 , . . . ,
bq
2 ,

bq
2 + 1

2

∣∣∣ z2
)

(2.1)

and

q+1Fq

(
a1, a2, . . . , aq+1

b1, b2, . . . , bq

∣∣∣ z)− q+1Fq

(
a1, a2, . . . , aq+1

b1, b2, . . . , bq

∣∣∣− z)
= 2z

a1a2 . . . aq+1

b1b2 . . . bq
2q+2F2q+1

( a1
2 + 1

2 ,
a1
2 + 1, . . . ,

aq+1

2 + 1
2 ,

aq+1

2 + 1
3
2 ,

b1
2 + 1

2 ,
b1
2 + 1, . . . ,

bq
2 + 1

2 ,
bq
2 + 1

∣∣∣ z2
)
.(2.2)

3. Two closed-form evaluations for 4F3( 1
16 )

In this section, we employ the above procedure to the two following results:

(3.1) 3F2

(
1
2 ,

1
2 ,

1
2

3
2 ,

3
2

∣∣∣− 1

4

)
=
π2

10
,

well known from [8, 7.4.6.1], and

(3.2) 3F2

(
1
2 ,

1
2 ,

1
2

3
2 ,

3
2

∣∣∣ 1

4

)
=

1

2
√

3
ψ′
(1

3

)
− π2

3
√

3
,

obtained in [9, (26), (41)] in the course of Feynman-graph calculations. This leads
us to two new closed-form summation formulas for the 4F3 series with argument 1

16 ,
asserted in the following theorem.

Theorem 1. The following two closed-form evaluations for the function 4F3( 1
16 )

hold true:

(3.3) 4F3

(
1
4 ,

1
4 ,

1
4 ,

3
4

1
2 ,

5
4 ,

5
4

∣∣∣ 1

16

)
=

1

2

[
π2
( 1

10
− 1

3
√

3

)
+

1

2
√

3
ψ′
(1

3

)]
and

(3.4) 4F3

(
3
4 ,

3
4 ,

3
4 ,

5
4

3
2 ,

7
4 ,

7
4

∣∣∣ 1

16

)
= 36

[
1

2
√

3
ψ′
(1

3

)
− π2

( 1

10
+

1

3
√

3

)]
,

where ψ(z) is the psi-function, the logarithmic derivative of the Euler gamma function
Γ(z).

Proof. The derivation of the results (3.3) and (3.4) asserted by the Theorem 1
are straightforward and based upon identities (2.1) and (2.2). We set therein q = 2
and substitute a1 = a2 = a3 = 1

2 and b1 = b2 = 3
2 , along with z = 1

4 . After
some simplifications in resulting hypergeometric 6F5 functions, we make use of explicit
expressions from (3.1) and (3.2) and arrive at closed-form evaluations (3.3) and (3.4).
This completes the proof of the Theorem 1. �
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Application. The following new hypergeometric representation of π2 can be easily
obtained from (3.3) and (3.4) by subtracting the appropriately weighted equations, so
that the terms containing the derivative of the ψ function disappear:

(3.5)
π2

10
= 4F3

(
1
4 ,

1
4 ,

1
4 ,

3
4

1
2 ,

5
4 ,

5
4

∣∣∣ 1

16

)
− 1

72
4F3

(
3
4 ,

3
4 ,

3
4 ,

5
4

3
2 ,

7
4 ,

7
4

∣∣∣ 1

16

)
.

Actually, the last formula directly reproduces the original result of (3.1) if we
recognize here the difference of even and odd parts of 3F2( 1

2 ,
1
2 ,

1
2 ; 3

2 ,
3
2 ; 1

4 ). However,
we can alternatively consider the coefficients of 4F3 functions in (3.5) as

(3.6) c1(n) =

(
1
4

)3
n

(
3
4

)
n(

5
4

)2
n

(
1
2

)
n
n!

=
2−2nΓ

(
2n+ 1

2

)
(4n+ 1)2Γ

(
n+ 1

2

)
n!

and

(3.7) c2(n) =

(
3
4

)3
n

(
5
4

)
n(

7
4

)2
n

(
3
2

)
n
n!

= 9
2−2nΓ

(
2n+ 3

2

)
(4n+ 3)2Γ

(
n+ 3

2

)
n!
,

and produce thereof the coefficients of the linear combination in (3.5) via

(3.8) c(n) = c1(n)− 1

72
c2(n) =

2−2n(4n(4n(12n+ 29) + 81) + 71)Γ
(
2n+ 1

2

)
16n!(4n+ 1)2(4n+ 3)2Γ

(
n+ 3

2

) .

Now, summing up the whole combination from the right-hand side of (3.5) with coef-
ficients c(n), we obtain the following representation of this identity in the form of the
infinite single sum:

(3.9)
π2

10
=

1

16

∞∑
n=0

4n(4n(12n+ 29) + 81) + 71

(4n+ 1)2(4n+ 3)2n!

Γ
(
2n+ 1

2

)
Γ
(
n+ 3

2

) ( 1

64

)n
.

We note that the convergence rate of the sum in (3.9) is essentially enhanced compared
to that in (3.1): As n→∞, the terms in the last sum decay ∝ 4−n times faster as in
the original 3F2 function in (3.1).

The results (3.3) through (3.9) have been verified using the MATHEMATICA
software [10].

Remark 1. The method of splitting the generalized hypergeometric series (1.1) into
its even and odd parts to generate new evaluations of higher-order hypergeometric
functions is not new. It goes back at least to Krupnikov and Kölbig [11, p. 84] and
Exton [12], and has been used recently in a number of publications, among them [13,
14, 15]. Other aspects of separation a power series into its even and odd components
are considered in [16] and [17, Chap. 3].
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4. Relation to Ramanujan’s notebooks, other functions, binomial and
harmonic sums

Remark 2. Due to the relation [18, (15)], [19, p. 329], [20, (1.10)]

(4.1) Cl2

(π
3

)
=

1

2
√

3

[
ψ′
(1

3

)
− 2

3
π2

]
,

the results (3.2), (3.3) and (3.4) can be alternatively expressed in terms of the maxi-
mum value Cl2(π3 ) of the Clausen function Cl2(θ) [21, Ch. 4], [20]

(4.2) Cl2(θ) = −
∫ θ

0

dθ ln
∣∣∣2 sin

θ

2

∣∣∣ =
∑
n>1

sinnθ

n2
= ImLi2(eiθ) .

This function, along with its natural extensions, is very important in the theory of
dilogarithm, Li2(z), and polylogarithm functions [21], and in computations of the
Feynman integrals [22, 23].

Remark 3. A few results, equivalent to the one in (3.2), have appeared in the
literature before [9, (26), (41)], though in quite different forms.

The first one goes back to Ramanujan, and appears in Example (iii) of Entry 16
in [24, p. 40] and [25, p. 264], as an evaluation of the binomial sum

(4.3)
∑
k>0

(2k

k

) 1

24k+1(2k + 1)2
=

3
√

3

4

∑
k>0

1

(3k + 1)2
− π2

6
√

3

where

(4.4) 2−2k
(2k

k

)
=

1

k!

(1

2

)
k

= 2−2k (2k)!

(k!)2
=

(2k − 1)!!

(2k)!!
:= µk

is the normalized binomial mid-coefficient (see e. g. [26, (2.2)] and related references).
Indeed, using for the function 3F2( 1

2 ,
1
2 ,

1
2 ; 3

2 ,
3
2 ; 1

4 ) from (3.2) its series definition (1.1)

along with the first equality from (4.4) and the simple relation ( 1
2 )k/(

3
2 )k = (2k+1)−1

between Pochhammer symbols, we see that it matches the binomial sum on the left-
hand side of (4.3) up to an extra factor of 1

2 in (4.3). To match the right-hand sides
of (3.2) and (4.3), we have to take into account that [7, 5.15.1], [27, 5.1.7.16]∑

k>0

1

(3k + 1)2
=

1

9
ψ′
(1

3

)
.

The same result has been reproduced by Zucker [28, (2.13)] in the form

(4.5)
∑
k>0

(2k

k

) 1

42k(2k + 1)2
=

3
√

3

4
L−3(2).

In notations of Zucker, 3
√

3
4 L−3(2) means the imaginary part of dilogarithm Li2(eiπ/3)

via [28, (1.11)] and [28, (1.8)]. Hence we see, by noticing (4.2) and (4.1), that his
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equation (4.5) is tantamount just to (3.2) expressed as

(5∗) 3F2

(
1
2 ,

1
2 ,

1
2

3
2 ,

3
2

∣∣∣ 1

4

)
= Cl2

(π
3

)
.

As noticed after (3.2), this relation appeared in [9] as a result of a calculation of
a Feynman integral. A slightly different treatment of the same integral in [29] yielded
an alternative relation,
(4.6)

3
√
π

8

∞∑
n=0

Γ(n+ 1)ψ(n+ 1)

Γ(n+ 3
2 )

4−n +
π
√

3

6
(γE + ln 3) =

2√
3

Cl2

(π
3

)
=

1

3
ψ′
(1

3

)
− 2π2

9
,

which is obtained by combining (A13) and (A.15) of [29]2. In (4.6), γE is the Euler
constant, given by the limiting behavior of harmonic numbers3

(4.7) Hn :=

n∑
k=1

1

k
= γE + ψ(n+ 1) via γE = lim

n→∞
(Hn − lnn) .

Using the first equation in (4.7) and [27, Annex 1.6]

Γ
(
n+

3

2

)
=

√
π

2
2−n

(2n+ 1)!

n!
,

we can rewrite (4.6) in a more instructive form:

(4.8)

∞∑
n=0

Hn(
2n
n

)
(2n+ 1)

=
8

3
√

3
Cl2

(π
3

)
− 2π

3
√

3
ln 3.

Now, combining (4.3), (4.5), (5∗), and (4.8), we obtain a nice chain of equalities,
(4.9)

3F2

(
1
2 ,

1
2 ,

1
2

3
2 ,

3
2

∣∣∣ 1

4

)
=

∞∑
k=0

(2k

k

) 4−2k

(2k + 1)2
=

3
√

3

8

∞∑
k=0

Hk(
2k
k

)
(2k + 1)

+
π

4
ln 3 = Cl2

(π
3

)
,

relating the generalized hypergeometric function from (3.2) and (5∗) with correspond-
ing binomial and inverse binomial harmonic sums.

It seems that identifications of results (3.2) and (5∗) in terms of a generalized
hypergeometric function 3F2 of argument 1

4 appear only in equations (26) and (41) of
reference [9].

Remark 4. Finally, we mention a similar connection of the 3F2 function of argument
− 1

4 from (3.1) with the sum f(x) considered by Ramanujan in Example (ii) of Entry
8 (see [24, p. 24], [25, p. 250]), and that from [28, (3.9)].

Similarly as before, we easily establish the equivalence of (3.1) with [28, (3.9)],
namely

(4.10)
∑
k>0

(2k

k

) (−1)k

24k(2k + 1)2
=
π2

10
.

2The reference to [29] given in [9] is incorrect: Ref. [13] in [9] has to be replaced by [29].
3For more related information, see e. g. [26, p. 147].
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Moreover, Zucker [28, p. 101] notices the equivalence of his equation (3.9) with the

special result f(1/
√

5) = π2/20 for the Ramanujan’s sum

(4.11) f(x) =

∞∑
k=1

hk x
2k−1

2k − 1
, where hk =

k∑
j=1

1

2j − 1
.

Hence, combining (3.1), (4.10), and (4.11), we may write

(4.12) 3F2

(
1
2 ,

1
2 ,

1
2

3
2 ,

3
2

∣∣∣ − 1

4

)
=

∞∑
k=0

(2k

k

) (−16)−k

(2k + 1)2
= 2

∞∑
k=1

hk 5−k+ 1
2

2k − 1
=
π2

10
.

The relations of the odd harmonic number hk to harmonic numbers H and digamma
function ψ are given by [26, (2.3)], viz.

hk = H2k −
1

2
Hk =

1

2

[
ψ
(
k +

1

2

)
− ψ

(1

2

)]
.

We are quite sure that the relations (4.9) and (4.12) deserve further analytical in-
vestigation, in particular towards generalizations to other arguments of 3F2 functions,
apart from ± 1

4 .

5. Concluding remarks

In this note, we have provided two closed-form evaluations for the generalized
hypergeometric function 4F3 of the argument 1

16 . A combination of these results

yields an interesting representation (3.9) of the transcendental number π2 in terms of
an infinite sum with an enhanced convergence rate.

There are many theoretical and practical applications of pFq functions in different
fields of mathematics [30, 31, 32, 33, 34], statistics and combinatorics [32, 35,
14], theoretical physics [36, 2, 37] and engineering [38, 39].4 Hopefully, our results
could be potentially useful in some of these areas. To the best of our knowledge,
the established summation formulas (3.3) and (3.4) did not appear in the literature
before; we believe, they represent a definite contribution to the theory of generalized
hypergeometric functions.

Moreover, we have established certain connections of functions under consideration
with the work of Ramanujan and other authors, with other special functions, and with
binomial sums of different kinds, some of them including harmonic numbers Hk and
hk.

A large number of results closely related to that of (3.3), (3.4) and (3.9) are under
investigation and will be subject of a subsequent publication.
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