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The valuations of power sums

T. Amdeberhan, Victor H. Moll, Vaishavi Sharma, and Christophe Vignat

Abstract. The p-adic valuation of the sequence formed by power sums is de-

scribed completely for the primes p = 2, 3 and 5. A general pattern arising from

these explorations is conjectured.

1. Introduction

Given a sequence of positive integers {xn} and a prime p, it is often an interesting
question to analyze the sequence formed by looking at the exact power of p dividing
xn. It turns out to be useful to introduce the following notation:

Definition 1.1. Let p be a prime and x ∈ N. The p-adic valuation of x, denoted
by νp(x) is the highest power of p which divides x. That is, x is factored as

x = pνp(x) × b, with b not divisible by p.

Information about the sequence {νp(xn)}may include (i) an exact formula; (ii) an
asymptotic behavior; (iii) characterization for indices n where νp(xn) has a specified
value. For instance, a classical well-known result of Legendre [5] states that

νp(n!) =

∞∑
k=1

⌊
n

pk

⌋
.

A less known result is that Legendre’s formula is equivalent to the expression

νp(n!) =
n− sp(n)

p− 1
,

where sp(n) is the sum of the base-p digits of n. This version may be used to provide

an elementary proof of the fact that the central binomial coefficients
(

2n
n

)
are even

numbers and that 1
2

(
2n
n

)
is odd precisely when n is a power of 2.

Given a sequence of integers xn and a prime p, properties of the sequence of
valuations {νp(xn)} often present interesting challenges. The problem considered in
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116 T. AMDEBERHAN ET AL

the present work is centered on νp(Sk(n)), where

Sk(n) =

k∑
j=1

jn,

is the sum of nth-powers.
The outline of the paper is as follows. Section 2 states some basic properties of

the Bernoulli numbers employed in this paper. Section 3 describes the 2-valuation
of Sk(n) in complete detail. This is done for the prime p = 3 in Section 4. Finally,
the analysis of the valuations for the prime p = 5 appear in Section 5. Section 6
contains some comments for primes p > 7. Many of the results in the present work
have appeared in [7].

2. Background material

The sum Sk(n) may be expressed as

Sk(n) =
Bn+1(k + 1)−Bn+1

n+ 1
,

where Bn(x) are the Bernoulli polynomials [6]. The coefficients Bj are the Bernoulli
numbers given by the generating function

t

et − 1
=

∞∑
j=0

Bj
tj

j!
,

and the Bernoulli polynomials are expressed as

Bn(x) =

n∑
k=0

(
n

k

)
Bn−kx

k.

The above generating function may be used to prove that Bj are rational numbers
and that Bj = 0 if j > 1 is odd. The arithmetic properties of the denominators of Bj ,
denoted by Den(Bj), are given by the von Staudt-Clausen Theorem [4, Section 7.9,
p. 115].

Theorem 2.1. The denominators of Bernoulli numbers are given by

Den(Bj) =
∏

q prime
q−1|j

q.

In particular, Den(Bj) is always square-free and divisible by 6 when j is even.

Expanding Bn+1(k + 1) gives Faulhaber’s formula

(2.1) Sk(n) =
1

n+ 1

n∑
j=0

(−1)j
(
n+ 1

j

)
Bjk

n+1−j .

This expression is fundamental to our analysis of the valuations of Sk(n).

Theorem 2.2 stated below gives Kummer’s congruences for the numerators of
Bernoulli numbers [3].
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Theorem 2.2. Let p be an odd prime, and Z(p) be the ring of rational numbers
whose denominator is prime to p. Then:

(1) Suppose n is a positive integer not divisible by p− 1, Then

Bn
n
∈ Z(p).

(2) Let a > 1 and m,n be even integers such that a+ 1 6 m 6 n. Suppose that
m and n are not divisible by p − 1 and n ≡ m mod (p− 1)pa−1. Then we
have

Bn
n
≡ Bm

m
mod pa

In particular, If p be an odd prime greater than 3, then pl divides Num(B2.pl).

An application of Theorem 2.2 for regular primes is stated below. A prime p is
said to be regular if p does not divide the numerators of B2i for all i ∈ {1, 2, . . . p−3

2 }.

Corollary 2.1. If p is an odd, regular prime and n is a positive even integer such
that n is not divisible by p and p− 1, then νp(Bn) = 0.

Proof. Theorem 2.1 implies that p does not divide Den(Bn). Further, if p is
regular, then p does not divide Num(Bn) for all even integers n = 2, 4, 6, · · · , p− 3, so
νp(Bn) = 0. Now we consider the case n > p− 3 where p and p− 1 does not divide n,
then there exists s even such that 1 < s < p− 3 < n and n ≡ s mod p− 1. Kummer’s
congruence now shows

Bn ≡ n
Bs
s

mod p 6≡ 0 mod p.

Therefore, νp(Bn) = 0 . �

3. The prime p = 2

The main result of this section provides an expression for the 2-adic valuation of
Sk(n). The arguments use the formula for Sk(n) in terms of the Bernoulli polynomials
given in (2.1). The explicit expression for 2-adic valuation of Sk(n) is presented next.
The valuations for some odd primes are given in subsequent sections.

Theorem 3.1. For n > 1, the 2-adic valuation of Sk(n) is given by

ν2(Sk(n)) = ν2

(⌊
k + 1

2

⌋)
×

{
1 if n is even

2 if n is odd.
(3.1)

= ν2

((
k + 1

2

))
×

{
1 if n is even

2 if n is odd.

Proof. The argument is divided into cases according to the value of k modulo 4.

k ≡ 1, 2 mod 4. This is elementary: Sk(n) ≡ 1 mod 2, since the sum consists of an
odd number of odd summands. The right hand side of (3.1) also vanishes, so the
statement holds.
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k ≡ 0 mod 4. Replace k by 4k, so that now k has no restrictions. The statement to
be proven becomes

ν2(S4k(n)) = ν2(2k)×

{
1 if n is even

2 if n is odd.

Consider first the case n is even. Relation (2.1) gives

S4k(n)

2k
=

1

n+ 1

n−1∑
j=0

(−1)j
(
n+ 1

j

)
(2Bj)2

2(n−j)kn−j + 2Bn.

Theorem 2.1 shows that 2Bj has an odd denominator, therefore every term appearing
in the sum is even. The result now follows from the fact that 2Bn is odd.

For n = 1, 3 the result can be verified directly. For n > 5 odd, (2.1) can be written
as

S4k(n)

(2k)2
=

22n

n+ 1
kn+1

+

n−3∑
j=1

(−1)j

j

(
n

j − 1

)
(2Bj)2

2(n−j)−1kn−1−j

+2nBn−1.

The first term is even since ν2(n+ 1) < 2n, the last term is odd by Theorem 2.1. The
next claim completes the proof for the present case.

Claim: For n > 5 odd and 1 6 j 6 n− 3, the expression

an,j =
1

j

(
n

j − 1

)
(2Bj)2

2(n−j)−1 is even.

Proof of claim. Write n = 2m+ 1. The case j = 1 is clear since an,1 = 22n−3. For
j > 1, it suffices to take j = 2t even, since the Bernoulli numbers vanish when the
index is odd. The claim reduces to proving that

bm,t =
1

t

(
2m+ 1

2t− 1

)
(2B2t)2

4(m−t) =
1

m− t+ 1

(
2m+ 1

2t

)
(2B2t)2

4(m−t)

is even for 1 6 t 6 m− 1. This follows directly from the inequalities

ν2(m− t+ 1) < 2 log2(m− t+ 1) < 4(m− t).

The assertion of the claim is now valid.

k ≡ 3 mod 4. This last case follows from the identity

ν2(S4k−1(n)) = ν2(S4k(n)).

To prove this, simply observe that S4k−1(n) = S4k(n) − (4k)n and use the bounds
ν2((4k)n) = n [1 + ν2(2k)] > 2ν2(2k) and the expression for the valuation of S4k(n)
given above.

The proof of the theorem is complete. �
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4. The prime p = 3

The analysis of the 3-adic valuation begins with a preliminary lemma.

Lemma 4.1. Let p be an odd prime. Then

(4.1) νp(1 + (p− 1)n) =

{
0 if n ≡ 0 (mod 2)

1 + νp(n) if n ≡ 1 (mod 2)

Proof. For n even, 1 + (p− 1)n ≡ 1 + (−1)n ≡ 2 (mod p). If n is odd, we have

(4.2) 1 + (p− 1)n =

n∑
j=1

(−1)j−1

(
n

j

)
pj = pn+ p2n

n∑
j=2

pj−2

j
(−1)j−1

(
n− 1

j − 1

)
where the last identity comes from the binomial expansion and elementary re-indexing

:

(
n

j

)
=

(n)

(j)

(
n− 1

j − 1

)
. The result follows from the inequality νp(j) < j − 1, for

j > 1. �

The special case p = 3 gives the next result.

Theorem 4.1. Let n ∈ N. Then,

(4.3) ν3(S3(n)) =

{
0 n is even

ν3(n) + 1 n is odd

Proof. The proof comes by applying Lemma 4.1. Note that S3(n) = S2(n) + 3n

and ν3(S2(n)) is at most ν3(n) + 1 which is less that ν3(3n) = n. �

This section presents an explicit formula for the 3-adic valuation of Sk(n). The
analysis uses two elementary results given next. The proofs are omitted.

Lemma 4.2. Assume x ≡ a mod A and x ≡ a mod B, Then x ≡ a mod lcm(A,B).

Lemma 4.3. Assume x ≡ a mod A and x ≡ b mod B with gcd(A,B) = 1. Then

x ≡ aBB∗ + bAA∗ mod AB

where AA∗ ≡ 1 mod B and BB∗ ≡ 1 mod A. Moreover A∗, B∗ satisfy AA∗ +BB∗ =
1.

The proof of the main result in this section uses the next auxiliary fact.

Proposition 4.1. Let n, k ∈ N. Then Sk(2n) ≡ kB2n mod k.

Proof. Use (2.1) to write

Sk(2n) = kB2n −
1

2n+ 1

2n+1∑
`=3

(−1)`
(

2n+ 1

`

)
B2n+1−`k

`.

The result now follows from the congruence:

(4.4)
1

2n+ 1

(
2n+ 1

`

)
B2n+1−`k

` ≡ 0 mod k, for 3 6 ` 6 2n+ 1.
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To prove this, let p be a prime dividing k. Then (4.4) follows from

(4.5) νp

(
1

2n+ 1

(
2n+ 1

`

)
B2n+1−`

)
+ (`− 1)νp(k) > 0,

and (4.5) follows from the special case νp(k) = 1. The elementary identity
1

2n+ 1

(
2n+ 1

`

)
=

1

`

(
2n

`− 1

)
, shows that it suffices to prove

(4.6) νp

(
1

`

(
2n

`− 1

)
B2n+1−`

)
+ (`− 1) > 0.

This is established from the observation that Theorem 2.1 implies that νp(Bm) > −1
and therefore

νp

(
1

`

(
2n

`− 1

)
B2n+1−`

)
+ (`− 1) > −νp(`)− 2 + `.

The inequality required in (4.6) follows from νp(`) 6 log2 ` and an elementary discus-
sion of some special cases for small `. �

The main result is stated next.

Theorem 4.2. Let n, k ∈ N. Then

ν3(Sk(n)) =


ν3(k) + ν3(k + 1) if n = 1,

ν3(k) + ν3(k + 1) + ν3(2k + 1)− 1 if n is even.

0 if n is odd and k ≡ 1 mod 3,

ν3(n) + 2ν3(k) + 2ν3(k + 1)− 1 if n > 1 is odd and k 6≡ 1 mod 3,

Proof. The proof is divided into cases.

n = 1. The result follows from Sk(1) = 1
2k(k + 1).

n even. Replace n by 2n, so that now n has no parity restrictions.

Claim: ν3(Sk(2n)) = ν3(Sk(2)). Then Sk(2) = 1
6k(k + 1)(2k + 1) gives the result.

Proof of the claim. Let x = Sk(2n). Replace k by 2k + 1 in the congruence in
Proposition 4.1 to obtain x ≡ (2k + 1)B2n mod 2k + 1. Using k + j ≡ −(k − (j −
1)) mod 2k + 1 gives 2x ≡ (2k + 1)B2n mod 2k + 1. Now observe that 4k(k + 1) ≡
−1 mod 2k + 1 to produce x ≡ −2k(k + 1)(2k + 1)B2n mod 2k + 1. Finally replace k
by k + 1 in the original congruence for x to produce x ≡ (k + 1)B2n mod k + 1.

In summary : x = 12n + 22n + · · ·+ k2n satisfy the congruences

x ≡ k(k + 1)(2k + 1)B2n mod k

x ≡ k(k + 1)(2k + 1)B2n mod k + 1

x ≡ −2k(k + 1)(2k + 1)B2n mod 2k + 1.

The first two congruences in (4.7) and Lemma 4.2 produce

x ≡ k(k + 1)(2k + 1)B2n mod k(k + 1).

and then the last congruence in (4.7) and Lemma 4.3 (with A∗ = −4, B∗ = 2k + 1)
yield

x ≡ B2nk(k + 1)(2k + 1)f(k) mod k(k + 1)(2k + 1)
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with f(k) = (2k + 1)2 + 8k(k + 1). Therefore

x ≡
(

3
2B2n

) 2k(k+1)(2k+1)
3 f(k) mod k(k + 1)(2k + 1).

Introduce the notation t = 2
3k(k + 1)(2k + 1) to write the previous congruence in the

form

(4.7)
x

t
=

3

2
B2nf(k) +

3α

2
, for some α ∈ Z.

Theorem 2.1 gives ν3( 3
2B2n) = 0 and since f(k) ≡ 1 mod 3, it follows from (4.7) that

x
t 6≡ 0 mod 3. For n even, this yields

ν3(Sk(n)) = ν3(k(k + 1)(2k + 1))− 1,

as claimed.

n odd and k ≡ 1 mod 3. Write n = 2m− 1 and k = 3t+ 1. Then

Sk(n) = 1 +

t∑
j=1

(
(3j − 1)2m−1 + (3j + 1)2m−1

)
+

t∑
j=1

(3j)2m−1

and (3j − 1)2m−1 + (3j + 1)2m−1 ≡ 0 mod 3 shows that Sk(n) ≡ 1 mod 3. Therefore
the valuation of Sk(n) is 0 as claimed.

n > 1 odd and k ≡ 0, 2 mod 3. Replace n by 2n− 1 and observe that (2.1) gives

Sk(2n− 1) =
1

2
(2n− 1)B2n−2k

2 +
1

2

2n−3∑
j=0

(−1)j
(

2n

j

)
Bjk

2n−j .

Thus, one obtains the congruence

Sk(2n− 1) ≡ 1
2 (2n− 1)B2n−2k

2 ≡ 1
2 (2n− 1)B2n−2k

2(k + 1)2 ≡ mod k.

Then Sk+1(2n− 1) ≡ Sk(2n− 1) and the previous argument yields

Sk(2n− 1) ≡ 1
2 (2n− 1)B2n−2k

2(k + 1)2 mod k + 1.

Finally Lemma 4.2 gives Sk(2n − 1) ≡ 1
2 (2n − 1)B2n−2k

2(k + 1)2 mod k(k + 1), and
writing this as

Sk(2n− 1) ≡
(

3
2B2n−2

)
(2n− 1)× 1

3k
2(k + 1)2 mod k(k + 1),

the result follows as in the previous case (when n is even). The proof is now complete.
�

Remark 4.1. The formula presented in Theorem 4.2 can be re-stated in terms
of the base cases Sk(n) for n = 1, 2, 3. This gives a reduction formula for the p-adic
valuation which is extended to general prime case in Section 6.

(4.8) ν3(Sk(n)) =


ν3(Sk(1)) n = 1

ν3(Sk(2)) n is even

0 n is odd, k ≡ 1 (mod 3)

ν3(S3(n)) + ν3(Sk(3))− 2 n > 1 is odd, k 6≡ 1 (mod 3).
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Notice from this formula that when n is even, ν3(Sk(n)) is actually independent
of the value of n, implying that when k ≡ 1 (mod 3), ν3(Sk(n) oscillates between 0
and ν3(Sk(2)) depending on whether n > 1 is even or odd.

Corollary 4.1. For n, k ∈ N,

ν3(S3k(n)) = ν3(S3k−1(n)).

Proof. The proof comes directly from the formula in Theorem 4.2. �

5. The prime p = 5

This section presents an analysis of the valuations ν5(Sk(n)). Complete results are
given for 2 6 k 6 5 where there are explicit analytic expressions for these valuations.
In the case k = 6 the valuation is given in terms of a tree structure. Such a phenomena
has appeared in the valuations of Stirling numbers of the second kind [2] and also in
the valuations of polynomial sequences [1].

5.1. The case k = 2. The 5-adic valuation of S2(n) is divided according to the
residue n mod 4. The valuation itself is given in terms of the digits of the base 5-
expansion of n; that is, in the expansion

n = a0 + a1 · 5 + a2 · 52 + a3 · 53 + · · · .
The next result comes directly from 4.1.

Lemma 5.1. For n ∈ N,

ν5(1 + 2n) =

{
0 if n 6≡ 2 mod 4

1 + ν5(n) if n ≡ 2 mod 4.

The next theorem states the 5-adic valuation of S2(n) in terms of the base 5
expansion of n. This is done by introducing the following notation: for n ≡ j mod 5.
Define x(n, j) to be the length of the initial segment of j’s in the base 5-expansion of
n (this is a segment composed of x(n, j) copies of the integer j).

Theorem 5.1. Assume the base 5 expansion of n starts with a sequence of r + 1
indices equal to 2; that is, a0 = a1 = · · · = ar = 2 and ar+1 6= 2. We say x(n, 2) =
r + 1. Then

ν5(S2(4n+ j)) =

{
0 if j 6≡ 2 mod 4

x(n, 2) + 1 if j ≡ 2 mod 4.

Proof. Start with S2(4n + j) = 1 + 24n+j ≡ 1 + 2j mod 5. Then S2(4n + j) 6≡
0 mod 5 when j 6≡ 2 mod 4. This gives the valuation for j 6≡ 2 mod 4.

Now assume j ≡ 2 mod 4, so that a0 = 2, and write n =
r∑

k=0

2 · 5k +
∑
k>r+1

ak5k,

with ar+1 6= 2. Then 4n + 2 = (2 + 4ar+1) 5r+1 +
∑
k>r+2

4ak5k. Since ar+1 6= 2, it

follows that 2 + 4ar+1 is not divisible by 5. Therefore ν5(4n+ 2) = r + 1. The proof
now follows from Lemma 5.1. �
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Remark 5.1. Note that the work in this proof can be generalized as follows

(5.1) νp ((p− 1)n+ j) = x(n, j) when j|(p− 1)

5.2. The case k = 3. The 5-adic valuations of S3(n) are easily accessible.

Theorem 5.2. For any n ∈ N,

ν5(S3(n)) = 0.

Proof. Observe that S3(n) = 1 + 2n + 3n ≡ 1 + 2n(1 + (−1)n) mod 5. Therefore
S3(n) ≡ 1 mod 5 for n odd. For n = 2t, then S3(n) = 1 + 2 · 4t. This expression has
values 3 or 4 mod 5. Therefore S3(n) 6≡ 0 mod 5 and the result follows from here. �

5.3. The case k = 4. The 5-adic valuations of S4(n) is discussed next according
to the residue of n modulo 4. The case n ≡ 0 mod 4 is easy. Each of the other three
cases admit similar proofs, the details are given for n ≡ 2 mod 4 only.

n ≡ 0 mod 4. In this case, replacing n by 4m,

S4(4m) = 14m + 24m + 34m + 44m = 1 + 16m + 81m + 256m ≡ 4 mod 5,

and it follows that ν5(S4(4m)) = 0.

n ≡ 1 mod 4. Now write n = 4m+ 1. Then

ν5(S4(4m+ 1)) = x(m, 1) + 1.

Proof. Write the sum S4(4n + 1) = 1 + 4n + 2n + (5 − 3)n. Since n is odd, by
Lemme 4.1 we have

(5.2) 1 + (4)n =

n∑
j=1

(−2)n−j
(
n

j

)
5j = 5n+ 52n

n∑
j=2

5j−2

j
(−1)n−j

(
n− 1

j − 1

)
.

Similarly, we get

(5.3) 2 + (5− 2)n =

n∑
j=1

(−2)n−j
(
n

j

)
5j = 5 · 2n+ 52n

n∑
j=2

5j−2

j
(−2)n−j

(
n− 1

j − 1

)
.

So we have,

S4(n) = 5n+ 10n+ 52n

n∑
j=2

5j−2

j

(
n− 1

j − 1

)
((−1)n−j + (−2)n−j)

= 5n

3 + 5

n∑
j=2

5j−2

j

(
n− 1

j − 1

)
((−1)n−j + (−2)n−j)


Since n = 4m+ 1, ν5(S4(n) = 1 + ν5(n) = x(m, 1) + 1. �
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Theorem 5.3. For n ∈ N and assume n ≡ j mod 5. Recall that x(n, j) is the
length of the initial segment of j’s in the base 5-expansion of n. Then

ν5(S4(4m+ j)) =


0 if j = 0

1 + x(m, j) if j = 1 or j = 2,

2 + x(m, 3) if j = 3 and m 6≡ 2 (mod 5)

2 + x(m, 2) if j = 3 and m ≡ 2 (mod 5)

The next examples illustrate the result in Theorem 5.3.

m = 3 and j = 0. Then

S4(4 · 3) = 17312754 = 2 · 3 · 97 · 151 · 197

shows that ν5(S4(4m+ j)) = 0 if j = 0.

m = 6 and j = 1. Then

S4(4 · 6 + 1) = 22 · 53 · 97 · 103 · 225552443,

so that ν5(S4(4 · 6 + 1)) = 3. The expansion 6 = 1 · 50 + 1 · 51 shows that x(6, 1) = 1
and this is consistent with the statement in the theorem.

m = 37 ≡ 2 (mod 5) and j = 3. Then

S4(4 · 37 + 3) = 22 · 54 · 17 · 101 · a prime factor of 82 digits.

The expansion 37 = 2 · 50 + 2 · 51 + 1 · 52 shows that x(n, 2) = 2 and it confirms that
ν5(S4(4 · 37 + 3) = 4 as stated in the theorem.

5.4. The case k = 5. The 5-adic valuations of S5(n) reduces to S4(n) in an el-
ementary manner.

Theorem 5.4. For n ∈ N,

ν5(S5(n)) = ν5(S4(n)).

Proof. This follows directly from S5(n) = S4(n) + 5n. �

5.5. The case k = 6. This is the first example in which the valuation ν5(S6(n))
is given by a tree structure. Start with the expression

S6(n) = 1n + 2n + 3n + 4n + 5n + 6n

and recall that the valuation of an integer x is determined by the highest power of
the prime p with the condition x ≡ 0 mod pr and x 6≡ 0 mod pr+1. Therefore it is
convenient to analyze S6(n) modulo powers of 5.

Step 1: S6(n) modulo 5. A direct calculation gives

S6(n) ≡ 1n + 2n + (−2)n + (−1)n + 0 + 1n mod 5

≡ 2 + (−1)n + [1 + (−1)n] 2n mod 5.

Therefore, if n is odd, then S6(n) ≡ 1 mod 5 and for n even, we have two cases: if
n ≡ 2 mod 4, then S6(n) ≡ 3 + 24t+3 mod 5 ≡ 3 + 16t · 8 ≡ 1 6≡ 0 mod 5, and and if
n ≡ 0 mod 4, then S6(n) ≡ 0 mod 5. This proves
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Lemma 5.2. Let n ∈ N. Then

ν5(S6(n)) =

{
0 if n 6≡ 0 mod 4

> 1 if n ≡ 0 mod 4.

Step 2: Take n ≡ 0 mod 4, write n = 4n0 and consider n0 modulo 5 by writing
n0 = 5n1 + j1, with 0 6 j1 6 4. Then S6(n) ≡ 0 mod 5 and

S6(n) = S6(4 · 5n1 + 4j1) =

6∑
k=1

k4·5n1k4j1 .

To evaluate this sum modulo 52, observe the term with k = 5 vanishes and the
remaining ones satisfy k4·5n1+4j1 ≡ (k4·)n1 × k4j1 ≡ k4j1 mod 52, in view of Euler’s

formula xϕ(52)=4·5 ≡ 1 mod 52. It follows that S6(n) ≡ S6(4j1) mod 52. Computing
these five values, gives

Lemma 5.3. Let n ∈ N be congruent to 0 modulo 4. Write n = 4(5n1 + j1), then
ν5(S6(n) > 1 and

ν5(S6(n)) =

{
1 if n1 ∈ N and j1 6= 1

> 2 if n1 ∈ N and j1 = 1.

Step 3: Indices of the form n = 4(5n1 + 1), for which ν6(S6(n)) > 2 are now split by
considering n1 in classes modulo 5; that is, write n1 = 5n2 + j2 and compute S6(n)
modulo 53. As in the previous step

S6(n) = S6(4 · 52n1 + 4 · 5j2 + 4) =

6∑
k=1

k4·52

· k4·5j2 · k4

and since k4·52 ≡ 1 mod 52 for k 6= 5 and ≡ 0 mod 53 for k = 5, it follows that
S6(n) ≡ S6(4 · 5j2 + 4) mod 53. A direct evaluation of the five sums S6(4 · 5j2 + 4)
modulo 53, for 0 6 j2 6 4, shows that only j2 = 1 gives zero modulo 53. This proves

Lemma 5.4. Let n ≡ 0 mod 4 be of the form n = 4(52n2 + 5j2 + 1), with n2 ∈ N
and 0 6 j2 6 4. Then ν5(S6(n)) > 2 and

ν5(S6(n)) =

{
2 if n2 ∈ N and j2 6= 1

> 3 if n2 ∈ N and j2 = 1.

It is now conjectured that this procedure may be continued indefinitely. This
determines a tree structure for the 5-adic valuation of S6(n).

Conjecture 5.1. Assume that the procedure described above has been completed
r times. This determines integers j1, j2, . . . , jr−1, all in the set {0, 1, 2, 3, 4}, such
that

n = 4(5r+1nr+1 + 5rjr + rr−1jr−1 + · · ·+ 5j2 + j1)

so that the condition ν2(S6(n)) > r is satisfied. It is conjectured that exactly one
of the values jr ∈ {0, 1, · · · , 4}, called the non-terminal index satisfies S6(n)(n) ≡
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0 mod 5r, while the other four (called terminal indices) produce S6(n) 6≡ 0 mod 5r.
Therefore

ν5(S6(n)) =

{
r if jr is terminal

> r + 1 if jr is not terminal.

6. Comments on higher primes

This section discusses, for regular prime p > 7, some special cases of νp(Sk(n)).
The results presented here are consequences of Faulhaber’s formula (2.1) and proper-
ties of the Bernoulli numbers given in Section 2.

The valuation of power sums is now connected with that of the Bernoulli numbers.

Theorem 6.1. If n ∈ N and p an odd, regular prime, then

νp(Sp(n)) =

{
νp(Bn) + 1 n is even

νp(n) + νp(Bn−1) + 2 n is odd.

Proof. Faulhaber’s formula (2.1) gives

Sp(n) =
1

n+ 1

n∑
i=0

(−1)i
(
n+ 1

i

)
Bip

n+1−i

=
1

n+ 1

(
B0p

n+1 −B1(n+ 1)pn . . .
(−1)n−1Bn−1(n+ 1)(n)p2

2
+ (−1)nBn(n+ 1)p

)
.

Each term in this sum has distinct p-adic valuations and thus

νp(Sp(n)) = min
06i6n

{
νp

((
n+ 1

i

)
Bip

n+1−i
)}

is determined by the last term of the sum. For n even, the last term is pBn and for n
is odd, Bn = 0 so the last term is now np2Bn−1. This confirms the result. �

Remark 6.1. Applying 5.3 and 6.1 to p = 5 we can relate the 5-adic expansion
of m to the 5-adic valuation of B4m+2, in particular

ν5(B4m+2) = ν5(4m+ 2) = x(m, 2)

.

Corollary 6.1. Let n ∈ N and p > 3 an regular odd prime. Then

νp(Sp(n)) = 0 if and only if n ≡ 0 mod p− 1.

Proof. The proof is a direct consequence of Theorems 6.1 and 2.1. �
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Corollary 6.2. Let n ∈ N and p be regular prime such that 2n 6≡ 0 mod p− 1.
Then,

νp(Sp(2n)) = νp(Num(B2n) + 1, and

νp(Sp(2n+ 1)) = νp(Num(B2n)) + νp(2n+ 1) + 2

Proof. If 2n is not divisible by p− 1, Theorem 2.1 shows that p does not divide
the denominator of B2n. It follows that the p-adic valuation of the Bernoulli number
in Theorem 6.1 is the same as the p-adic valuation of the numerator of the Bernoulli
number. The result follows from here. �

Corollary 6.2 relates the p-divisibility of the power sums to the p-divisibility of the
numerators of Bernoulli numbers. By Kummer’s Congruence, we get νp(Sp(2p

l)) =
νp(Num(B2pl) + 1 > l+ 1. On the other hand, it also implies than if p2 divides Sp(n)
then p divides Num(B2n).

Remark 6.2. Corollary 6.2 implies the recurrence relation

νp(Sp(2n+ 1)) = νp(Sp(2n)) + νp(2n+ 1) + 1.

Corollary 6.1 classifies indices n for which νp(Sp(n)) = 0. The next result partially
classifies indices for which νp(Sp(n)) = 1.

Corollary 6.3. Let p be an odd prime p. Then

(1) If p is regular prime, then νp(Sp(2n)) = 1 if and only if 2n 6≡ 0 mod p and
2n 6≡ 0 mod p− 1

(2) νp(Sp(2n+ 1)) = 1 if and only if 2n+ 1 6≡ 0 mod p and 2n ≡ 0 mod p− 1.

Proof. The proof is a direct consequence of Theorem 6.1 and Corollary 2.1.
First assume n is even and write 2n instead of n. Then νp(Sp(2n)) = 1 if and only
if νp(B2n) = 0. Corollary 2.1 holds precisely when p is regular and 2n is not divisible
by p nor p− 1.
In the case n odd, replace n by 2n+1. Then νp(Sp(2n+1)) = νp(B2n)+νp(2n+1)+2 =
1 if and only if νp(B2n) = −1 and νp(2n + 1) = 0, i.e p − 1 divides Den(B2n) and p
does not divide 2n+ 1. The result now follows from Theorem 2.1. �

The next result gives the special case when k is a power of p. The result separates the
variables n and k. This also holds for p = 2 and 3.

Theorem 6.2. Let n, k ∈ N and p an odd, regular prime such that k = ps; that
is, νp(k) = s. Then

νp(Sk(n)) = νp(Sps(n)) =


νp(k) n = 1

νp(Sp(n)) + 2(νp(k)− 1) n is odd

νp(Sp(n)) + (νp(k)− 1) n is even
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Proof. The proof is split into cases depending on n. The case n = 1 is clear
from expanding Sk(1). The case n odd is considered first. Faulhaber’s formula (2.1),
Theorem 6.1 and Bn = 0, it follows that

νp(Sps(n)) = νp(Bn−1np
2s)

= νp(Bn−1np) + νp(2s− 2)

= νp(Sp(n)) + 2(νp(k)− 1).

The case n even is similar. �

Theorem 6.3. For any n, s ∈ N and l co-prime to regular prime p,

νp(Spsl(n)) = νp(Sps(n))

Proof. Apply Faulhaber’s formula (2.1) to Spsl(n):

Spsl(n) =
1

n+ 1

n∑
i=0

(−1)i
(
n+ 1

i

)
Bi(p

s)n+1−iln+1−i

=
1

n+ 1

(
B0p

s(n+1)ln+1 + · · ·+ (−1)n−1Bn−1(n+ 1)(n)p2sl2

2
+ (−1)nBn(n+ 1)psl

)
.

The p-adic valuation of this sum is given by the p-adic valuation of the last or
the second to last term, depending on the parity of n. The result now follows from
νp(l) = 0. �

This section concludes by proposing a conjecture generalizing of Corollary 4.1.
This conjecture is shown to be equivalent to a bound on νp(Spm(n)).

Conjecture 6.1. For any regular prime p and n ∈ N, then

(6.1) νp(Spm−1(n)) = νp(Spm(n)).

Since Spm−1(n) = Spm(n)− (pmn), it follows that

νp(Spm−1(n)) > min{νp(Spm(n)), νp((pm)n)}.

Thus equation (6.1) is equivalent to

νp(Spm(n)) 6 νp((pm)n).

This has been verified on Mathematica up to p = 229 (the 50th prime) and m 6
100, n 6 100. It is possible to show that Conjecture 6.1 holds for n = 1. Theorems
3.1 and 4.2 imply that it holds for p = 2 and p = 3. Corollary 6.1 may then be
used to prove this conjecture when n is even and p− 1|n, since under these conditions
νp(S(p−1)l(n) = 0. On the other hand, Corollary 2.1 and Kummer’s congruence show
that equation (6.1) holds if p is a regular prime and p and p− 1 do not divide n. The
general case has eluded us.
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