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Review of some iterative root–finding methods from a

dynamical point of view

Sergio Amat∗, Sonia Busquier, and Sergio Plaza‡

Abstract. From a dynamical point of view applied to complex polynomials, we

study a number of root–finding iterative methods. We consider Newton’s method,

Newton’s method for multiple roots, Jarratt’s method, the super–Halley method,

the convex as well as the double convex acceleration of Whittaker’s method, the
methods of Chebyshev, Stirling, and Steffensen, among others. Since all of the
iterative root–finding methods we study satisfy the Scaling Theorem, except for

Stirling’s method and that of Steffensen, we obtain their conjugacy classes.

1. Introduction

Before formulating the problems we choose to investigate, we recall some basic
notions of complex dynamics. Let R : C −→ C be a rational map on the Riemann

sphere, that is, R(z) = p(z)
q(z) , where p(z) and q(z) are polynomials without common

factors. The degree of R(z) is defined as deg(R) = max{deg(p),deg(q)} . In what
follows, we will consider only rational maps of degree greater than or equal to two.

Let R be a rational map. For z ∈ C we define its orbit as the set

orb(z) = {z,R(z), . . . , R◦k(z), . . .} ,
where R◦k stand for the k–fold iterate of R . A point z0 is a fixed point of R if
R(z0) = z0 . A periodic point of period n is a point z0 such that R◦n(z0) = z0
and R◦j(z0) 6= z0 for 0 < j < n . Observe that if z0 ∈ C is a periodic point of
period n > 1 , then it is a fixed point of R◦n . A fixed point z0 of R is attracting,
repelling, or indifferent if |R′(z0)| is less than, greater than, or equal to 1, respectively.
A superattracting fixed point of R is a fixed point which is also a critical point of
R . A periodic point of period n is attracting, superattracting, repelling, or indifferent
if it is, as a fixed point of R◦n , attracting, superattracting, repelling, or indifferent,
respectively. The Julia set of a rational map R , denoted J (R) , is the closure of the
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set consisting of its repelling periodic points. Its complement is the Fatou set, denoted
F(R) .

Let ζ be an attracting fixed point of R . Its basin of attraction is the set B(ζ) =
{z ∈ C : R◦n(z) −→ ζ as n −→ ∞} . The immediate basin of attraction of an
attracting fixed point ζ of R(z) , denoted B∗(ζ) , is the connected component of B(ζ)
containing ζ . Finally, if z0 is an attracting periodic point of period n of R , then the
basin of attraction of the orbit orb(z0) is the set B(orb(z0)) = ∪n−1

j=0R
◦j(B(z0)) , where

B(z0) is the attraction basin of z0 as a fixed point of R◦n , and its immediate basin of
attraction is the set B∗(orb(z0)) = ∪n−1

j=0R
◦j(B∗(z0)) . If R has an attracting periodic

point z0 , then the basin of attraction is contained in the Fatou set and J (R) = ∂B(z0) ,
which is the topological boundary of B(z0) . Therefore, the chaotic dynamics of R is
contained in its Julia set.

For an extensive and comprehensive review of the theory of iteration of rational
maps, see [13] and [14]. For a general treatment of the theory of iteration of rational
maps, see [38], [39], [32], [10], [53]. For a more advanced approach to the theory of
iteration of rational maps, see [40] and [37]. As far as the history of complex dynamics
is concerned, the book by D. Alexander [1] (and references therein) is a quite valuable
source.

Newton’s iterative method associated to an analytic function f(z) is Nf (z) =

z − f(z)
f ′(z) . Now if p(z) is a complex polynomial, then the function Np(z) defines a

rational map on the Riemann sphere C , and hence defines a discrete dynamical system
zn+1 = Np(zn) . If α is a simple root of p (that is, p(α) = 0 and p′(α) 6= 0 ), then α

is a superattracting fixed point of Np and, generically, N ′′
p (α) 6= 0 . Consequently, if

the initial guess z0 is chosen near α , then the sequence of iterates (zn)n∈N converges
quadratically to α , or in other words |zn+1−α| 6 c|zn−α|2 for some constant c > 0 .
This fact makes Newton’s method one of the most widely used methods for approxi-
mating the roots of polynomials. In [30], F. v. Haeseler and H-O. Peitgen discuss the
dynamics of Newton’s algorithm and give a description of the basins of attraction of the
roots. In [57] and [58], the dynamics of the families of iterative methods of Schröder
and of König is addressed, and the parameter spaces of both families of methods asso-
ciated to the one–parameter family of cubic polynomials pA(z) = z3 + (A − 1)z − A

are described in the case the order of convergence is either three or four. An analogous
study for Newton’s iterative method associated to the one–parameter family pA(z)
above was begun by J. H. Curry, L. Garnett and D. Sullivan. In this work, parameter
regions in which extraneous attractive periodic cycles exist are described. (See [20].)
A similar feature is also observed for Schröder’s family of iterative methods associated
to pA(z) , as well as for König’s family associated to pA(z) . (See [57], [58].) For a
more recent study on the subject for higher orders of convergence, see [8] and [7], as
well as [22]. Another well known iterative root–finding method is Halley’s iterative
method; for a study of its dynamics for real functions, see [12] and the references
therein. In [51], the geometry of Halley’s method is studied. In [16], recent advances
in a description of the conjugacy classes and the dynamics of König’s family of itera-
tive root–finding algorithms applied to complex polynomials, which reduce to Newton’s
and Halley’s methods for order 2 and 3, respectively, are given. Advances on the study



REVIEW OF SOME ITERATIVE ROOT–FINDING METHODS... 5

of the dynamics for the super–Newton method, as well as for Cauchy’s and Halley’s
methods are carried out in [35].

2. Basic definitions and results

In what follows, we will assume that f : U −→ C is an analytic function, where
U ⊂ C is an open set. We focus on the case U = C and f(z) a polynomial function.

Definition 2.1. We say that a map f −→ Tf carrying a complex–valued function

f(z) to a function Tf : C −→ C is an iterative root–finding algorithm if Tf (z) has a
fixed point at every root of f(z) , and given an initial guess z0 , the sequence of iterates
(zk)k>0 , where zk+1 = Tf (zk) , converges to a root r ∈ C of f(z) whenever z0 is
sufficiently close to r .

Cayley’s Problem

In his study on the convergence of Newton’s iterative map, A. Cayley poses the
following question: Let p(z) be a polynomial. What is the set consisting of the initial
guesses z0 ∈ C for which the sequence of iterates zn = Np(zn−1) , with n > 1 ,
converges to a root α of p(z) . In other words, what is the basin of attraction of α ?
(See [17], as well as [18].)

We can ask the same question for an arbitrary iterative root–finding method Tp :

C −→ C . Now it is clear that F(Tp) ⊃ ∪kj=1B(rj) , where r1, . . . , rk are the roots of
p(z) . It is natural to ask the following questions. Let p(z) be a polynomial. What
is the set consisting of the initial guesses z0 ∈ C for which the sequence of iterates
zn+1 = Tp(zn) , with n > 1 , converges to a root α of p(z) . In other words, what is
the basin of attraction of α ? What is the set consisting of the points z0 such that
the sequence of iterates zn+1 = Tp(zn) does not converge to any root of p(z) ? Now
since J (Tp) is an invariant set, we have that if z0 ∈ J (Tp) , then its orbits will be
contained in J (Tp) . Since J (Tp) is the closure of repelling periodic points of Tp ,
and since in computer experiments we only use arithmetic of finite precision, we have
that if z0 ∈ J (Tp) , then zn will eventually be thrown off J (Tp) due to roundoff
error (even if small). Now if there is an (super)attracting periodic orbit of period
greater than or equal to two, denoted orb(w) , then its attraction basin is a non–empty
open set contained in the Fatou set F(Tp) . Thus for any z0 ∈ B(orb(w)) , we have
orb(z0) ⊂ B(orb(w)) , and the sequence of iterates will never converge to a root of
p(z) . Therefore, the following question becomes important to answer. Is it possible for
the sequence of iterates zn+1 = Tp(zn) to converge to a fixed point of Tp which is not
a root of p or to an (super)attracting periodic orbit of Tp ?

In [9], B. Barna studies the behavior of Newton’s method on the real line, and
his classical result asserts that if p(z) is a polynomial of degree greater than or equal
to 4, which only real roots, then Np has periodic orbits of any period which are non–
attractive. He gives examples of such polynomials, as for instance the polynomial
p(z) = 3z5 − 10z3 + 23z for which {−1, 1} is a superattracting periodic orbit for
Newton’s iterative function Np . Extensions of these results are obtained in [19] and
[31].
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Definition 2.2. (Order of convergence) Let zn+1 = zn − φ(zn) be an iterative
root–finding method such that for every simple root r of f(z) , we have φ′(r) = 1 ,
φ′′(r) = · · · = φ(k−1)(r) = 0 and φ(k)(r) 6= 0 , then we say that the root–finding
algorithm is of order at least k convergent.

Definition 2.3. Let R1, R2 : C −→ C be two rational maps. We say that R1

and R2 are conjugated if there is a Möbius transformation ψ : C −→ C such that
R2 ◦ ψ(z) = ψ ◦R1(z) , for all z .

An important feature of conjugation of rational maps is given by the following
classical result.

Theorem 2.1. Let R1 and R2 be two rational maps, and let ψ be a Möbius
transformation conjugating R1 and R2 , that is, R2 = ψ ◦R1 ◦ ψ−1 . Then F(R2) =
ψ(F(R1)) and J (R2) = ψ(J (R1)) .

From a dynamical system point of view, conjugacy plays a central role in the
understanding of the behavior of classes of maps in the following sense. Suppose we wish
to describe both the quantitative and the qualitative behavior of the map z −→ Tf (z) ,
where Tf is some iterative root–finding map. Since a conjugacy preserves fixed and
periodic points as well as their type, and the attraction basins as well as, the dynamical
data concerning f is carried by the fixed points of Tf , as well as by the nature of
such fixed points which may be (super)attracting, repelling, or indifferent. Therefore,
for polynomials of degree greater than or equal to two, it is worthwhile to build up
parametrized families consisting of polynomials pµ which are as simple as possible so
that there exists a conjugacy between Tp and Tpµ for a suitable choice of the complex
parameter µ .

Definition 2.4. (universal Julia set) We will say that an iterative root–finding
algorithm f −→ Tf has universal Julia set for polynomials of degree d if there exists
a rational map R such that for every polynomial f of degree d , J (Tf ) is conjugated
to J (R) by a Möbius transformation ψ , or in other words J (Tf ) = ψ(J (R)) .

The next result, which is due to A. Cayley and to E. Schröder, has great historical
importance. (See [17], [18]),and [52].) In an attempt to understand the dynamics of
Newton’s method in the complex plane, they investigated the dynamics of Newton’s
method applied to polynomials of a particularly simple form. Cayley realized that
major difficulties would arise when attempting to extend this result for quadratics to
cubics and beyond. It is believed that this circumstance motivated further work of P.
Fatou and G. Julia along these lines.

Theorem 2.2. (A. Cayley [17], [18], and E. Schröder [52]) Let

Nf (z) =
z2 − a b

2 z − (b+ a)

be the rational map obtained from Newton’s method applied to the quadratic polynomial
f(z) = (z− a)(z− b) , with a 6= b . Then Nf is conjugated to the map z −→ z2 by the
Möbius transformation M(z) = z−a

z−b , and J (Nf ) is the straight line in the complex
plane corresponding to the locus of points equidistant from a and b .
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We have extensions of this theorem which are due to K. Kneisl. Recall that Halley’s
method associated to f is given by

Hf (z) = z − 2f(z)f ′(z)

2f ′(z)2 − f(z)f ′′(z) .

Theorem 2.3. (Kneisl [35]) Let

Hf (z) =
z3 − 3 a b z + a b (a+ b)

3 z2 − 3 (a+ b) z + a2 + a b+ b2

be the rational map obtained from Halley’s method applied to the quadratic polynomial
f(z) = (z−a)(z− b) , with a 6= b . Then Hf is conjugated to the map z −→ z3 by the
Möbius transformation M(z) = z−a

z−b , and J (Hf ) is the straight line in the complex
plane corresponding to the locus of points equidistant from a and b .

Recall also that Chebyshev’s method, also known as the super–Newton method,
associated to a map f is defined by

Sf (z) = z − f(z)

f ′(z)
− f(z)2f ′′(z)

2f ′(z)3
.

Theorem 2.4. (Kneisl [35]) Let

Sf (z) =
3z4 − 2(a+ b)z3 − 6abz2 + 6ab(a+ b)z − ab(a2 + 3ab+ b2)

8 z3 + 12( a+ b) z2 + (a+ b)2 z + (a+ b)3

be the rational map obtained from the super–Newton method applied to the quadratic
polynomial f(z) = (z − a)(z − b) , with a 6= b . Then Sf is conjugated to the map

S3(z) =
z4+2z3

2z+1 via the Möbius transformation M(z) = z−a
z−b .

Here we extend the results due to Schröder, Cayley, and Kneisl to the set consisting
of the iterative methods under discussion.

By definition, any iterative method Tf associated to a function f has the property
that the roots of f are fixed points of Tf , which are, in general, superattracting fixed
points. Note that there may exist other fixed points of Tf which do not correspond
to any root of f , and which we call free fixed points. These points can be either (su-
per)attracting, or repelling, or indifferent. Therefore, the following three questions are
natural. Do there exist free fixed points for the iterative methods under consideration?
If so, we may ask whether or not they are (super)attracting or indifferent fixed points.
We may also ask the following question. Do there exist (super)attracting or indifferent
periodic orbits for the iterative methods considered in this paper?

Concerning the problem on the existence of (super)attracting periodic orbits, a
general method for constructing polynomials with a (super)attracting periodic orbit of
any given period for Newton’s iterative method is given in [44]. For similar results for
other iterative–root finding methods, see [4] as well as [5]. Now for other iterative root–
finding methods, we may formulate the following problem. Construct specific examples
of polynomials so that when a given iterative map studied in this paper is applied to
them, the resulting rational map has attracting periodic orbits of period greater than or
equal to 2.
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On the other hand, if for some iterative root–finding method there are attracting
fixed points which do not correspond to the roots of f or there are attracting periodic
orbits, we have the following problem. Describe attraction basins of (super)attracting
fixed points corresponding to roots of polynomials, as well as to those corresponding to
attracting periodic orbits. For example, study their topological properties. For which
iterative maps is the Julia set connected? locally connected? Concerning this problem,
it was proved independently by M. Shishikura [50] and F. Przytycki [46] that the Julia
set of Newton’s method applied to polynomials is connected. Actually, Shishikura
showed that the Julia set is connected for every rational map having only one weakly
repelling fixed point, or in other words a fixed point z0 of a rational map R such that
|R′(z0)| > 1 or R′(z0) = 1 .

As we note, for most iterative root–finding methods, the roots of f are superat-
tracting fixed points. The critical points that do not correspond to roots of f are
called free critical points. The reason why free critical points are important is due to
the following classical result.

Theorem 2.5. (Fatou–Julia) Let R be a rational map. Then the immediate basin
of attraction of each attracting periodic point contains at least one critical point.

Consequently, the existence of attracting periodic orbits places an obstruction to
actually finding a root of f because, in such a case, the immediate basin of attraction of
each attracting periodic point contains at least one critical point. Note that the search
of the roots of f is not only interfered by the existence of attracting periodic orbits;
in some cases there may exist additional fixed points, or in other words fixed points
which are not roots of f , which may be either attracting, or repelling, or indifferent.

When we apply any of the root–finding iterative methods studied here to complex
polynomials, we obtain rational maps on the Riemann sphere. In order to study affine
conjugacy classes of these iterative methods, we mention the following relevant result.

Theorem 2.6. (Scaling Theorem for Newton’s method, [20]) Let T (z) = αz+β ,
with α 6= 0 , be an affine map on the complex plane, and let λ ∈ C be a non–zero
constant. Let f(z) be a polynomial; define the polynomial g(z) = λ(f ◦ T )(z) . Then
Newton’s methods Nf and Ng are affinely conjugated by T , that is, Nf ◦ T (z) =
T ◦Ng(z) (scaling equation), for all z .

In [47], this result is generalized for Halley’s method, and in [43] for the families
of iterative root–finding methods of König and of Schröder. Moreover, in [16] this
theorem is also shown for König’s family of iterative methods. We extend the Scal-
ing Theorem for the remaining iterative methods considered in this paper, except for
Stirling’s method and that of Steffensen, that do not satisfy the scaling equation.

If the Scaling Theorem holds for the iterative methods considered here, applying
these methods we reduce the study of the dynamics of the rational maps obtained.

Let R be a rational map on the Riemann sphere. The postcritical set of R , denoted
P(R) , is the closure of the strict forward orbits of the critical points of R . In other
words, if we denote the set consisting of the critical points of R by C(R) , we have
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that

P(R) =
⋃

c∈C(R)

n>0

R◦n(c) .

We have R(P(R)) ⊂ P(R) and P(R◦n) = P(R) . In other words, the postcritical
set is the smallest closed set containing the critical values of R◦n , for every n > 0 .

A result in the line of this work is the following.

Theorem 2.7. (See [37].) Let R be a rational map on the Riemann sphere.
Then the postcritical set P(R) of R contains the attracting periodic orbits of R , the
indifferent periodic orbits which lie in the Julia set of R , the boundary of every Siegel
disk (a k–periodic component U of the Fatou set of R , which is a disk on which R◦k

acts by an irrational rotation) or the boundary of every Herman ring (a k–periodic
component U of the Fatou set of R , which is an annulus on which R◦k acts by an
irrational rotation).

The importance of the description of the postcritical set of a rational map is given
by the following.

Theorem 2.8. (Characterization of hyperbolicity, see [37]) Let R be a rational
map. Then the following three conditions are equivalent:

(1) The postcritical set P(R) is disjoint from the Julia set J (R) .
(2) There are neither critical points nor parabolic periodic points (an indifferent

k–periodic point z0 such that (R◦k)′(z0) is a root of unity) in the Julia set.
(3) Every critical point of R tends to an attracting periodic point under forward

iterations.

Definition 2.5. A rational map is hyperbolic if any of the three preceding equiva-
lent conditions are satisfied.

Concerning the size, from a measure point of view of the Julia set of a hyperbolic
rational map, we have the following well known result.

Theorem 2.9. The Julia set of a hyperbolic rational map has zero measure.

Remark. The measure considered in the preceding result is Lebesgue’s measure on
the Riemann sphere.

We now have the following problem. For any iterative root–finding map considered
in this paper, study the parameter values for which when we apply them to the quadratic
family pc(z) = z2 + c , as well as to the cubic family pA(z) = z3 + (A − 1)z − A , the
resulting rational map is hyperbolic.

3. Numerical Methods

In this section, we will show that the Scaling Theorem holds for all of the itera-
tive root–finding method that we consider. Therefore, we may consider the simplest
representative rational map obtained through conjugacy and attempt to describe the
dynamics of the conjugacy classes. Concerning the description of parameter spaces, a
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study for Halley’s iterative map has already been done. (See [16] as well as [47].) Fur-
thermore, Chebyshev’s iterative map appears as an element of the family of Schröder’s
iterative maps Sσ ; indeed, it corresponds to the iterative map S3 (we note that for
σ = 2 , the iterative map S2 is Newton’s iterative map). In general, some progress
has been made on the study of the parameter space for cubic and quartic polynomials.
(See [22].) Finally, for the remaining iterative maps presented here, almost nothing is
known about the parameter spaces for polynomials of degree less than or equal to four.

Let f : C −→ C be an analytic function. We define two maps associated to f .

Let uf (z) = f(z)
f ′(z) and let Lf (z) = f(z)f ′′(z)

f ′(z)2 , which are analytic functions in every

subregion U of C in which f ′(z) 6= 0 .
Define a new function g(z) by g = f ◦ T , where T : C −→ C is the affine map

T (z) = αz+β , with α 6= 0 . Then (g◦T−1)′(z) = g′(T−1(z))(T−1)′(z) = 1
α
g′(T−1(z)) ,

that is, g′(T−1(z)) = αf ′(z) , and similarly (g ◦ T−1)′′(z) = 1
α2 g

′′(T−1(z)) , that

is, g′′(T−1(z)) = α2 f ′′(z) . Proceeding similarly, we may show that g(i)(T−1(z)) =

αif (i)(z) , for each i > 1 . Now we have ug(T
−1(z)) = g(T−1(z))

g′(T−1(z)) = f(z)
αf ′(z) = 1

α
uf (z) ,

that is, αug(T
−1(z)) = uf (z) and Lg(T

−1(z)) = g(T−1(z)) g′′(T−1(z))
g′(T−1(z))2 = Lf (z) .

Note that if Φ(z) = z − φ(z) is an arbitrary iterative root–finding map, then T ◦
Φ◦T−1(z) = α(T−1(z)−φ(T−1(z)))+β = z−αφ(T−1(z)) . Therefore, to show that an
iterative method satisfies the Scaling Theorem, it suffices to prove that αφ(T−1(z)) =
φ(z) .

3.1. Newton’s iterative map. Let f : C −→ C be an analytic function. New-
ton’s map associated to f is

Nf (z) = z − uf (z) = z − f(z)

f ′(z)
.

Since N ′
f (z) =

f(z)f ′′(z)

(f ′(z))2
= Lf (z) , we have that the critical points of Nf are

either roots of f or solutions of the equation f ′′(z) = 0 . We have Nf (z) = z if and
only if f(z) = 0 , or in other words the fixed points of Nf are the roots of f . Also,
we have that Nf (∞) = ∞ ,a s well as that z = ∞ is a repelling fixed point of Nf .

On the other hand, if z0 is a fixed point of Nf , then N ′
f (z0) =

m− 1

m
, where m is

the multiplicity of z0 as a root of f . Thus if z0 is a simple root of f , then z0 is a
superattracting fixed point of Nf , that is, N ′

f (z0) = 0 . Therefore, the convergence

of the iterated Nn
f (z) is at least quadratic in a neighborhood of z0 . The next three

pictures show the basins of attraction of the roots when we apply Newton’s iterative
map to the corresponding polynomials.
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f(z) = z3 − 1 f(z) = z3 − z f(z) = z3 + 0.5z − 1.5

It is well known that Newton’s iterative method satisfies the Scaling Theorem. (See
[20].)

The parameter space for cubic polynomials is studied in [20]. The topology of the
basins of attraction of the roots for cubic polynomials was studied by P. Roesch in her
Ph. D. Thesis, which is an extension of previous work of Tan Lei. (See [48], as well as
[54].)

Newton’s method applied to the polynomial f(z) = (z − a)(z − b) , with a 6= b ,

yields Nf (z) =
z2 − a b

2 z − (b+ a)
, which is conjugated to the map z −→ z2 via the Möbius

transformation M(z) = z−a
z−b . Consequently, J (Nf ) is the straight line in the complex

plane corresponding to the locus of points equidistant from a and b .

3.2. Newton’s map for multiple roots. Newton’s map for multiple roots ap-
pears in a work of Schröder and is given by

Mf (z) = z − f(z)f ′(z)

f ′(z)2 − f(z)f ′′(z) = z − uf (z)

1− Lf (z)
.

(See [52].) This method is an order 2 iterative map, including the case of multiple roots.

It may be obtained applying Newton’s iterative map to the function uf (z) =
f(z)

f ′(z)
,

which has simple roots in each multiple root of f .
The next two pictures show the basins of attraction of the roots when we apply

Newton’s iterative map for multiple roots to the corresponding polynomials.

f(z) = z3 − 1 f(z) = z3 − z
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For advances in the description of the parameter space for cubic polynomials see
[8].

Schröder’s method applied to the polynomial f(z) = (z − a)(z − b) , with a 6= b ,
yields

Mf (z) =
(a+ b) z2 − 4 a b z + a b (a+ b)

2 z2 − 2 (a+ b)z + a2 + b2
,

which is conjugated to the simplest map z −→ −z2 via the Möbius transformation
Mf (z) =

z−a
z−b . Consequently, J (Mf ) is the straight line in the complex plane corre-

sponding to the locus of points equidistant from a and b .

3.3. Halley’s iterative map. Halley’s iterative map was presented on or about
1694 by E. Halley who is well known for first computing the orbit of the comet that
carries his name. This algorithm is one of the most rediscovered iterative functions of
the literature. (See [51], [24] and references therein.) From its geometric interpretation
for real functions, it is also known as the method of tangent hyperbolas. (See [49].) This
iterative root–finding method is given by

Hf (z) = z − 2f(z)f ′(z)

2f ′(z)2 − f(z)f ′′(z) = z − 2uf (z)

2− Lf (z)
.

It is well known that Halley’s map is an order three iterative map in neighborhoods
of simple roots.

One way to obtain this iterative map is applying Newton’s method to the function

g(z) = f(z)√
f ′(z)

.

The next three pictures show the basins of attraction of the roots when we apply
Newton’s iterative map to the corresponding polynomials.

f(z) = z3 − 1 f(z) = z3 − z f(z) = z3 + 0.5z − 1.5

Halley’s method applied to the polynomial f(z) = (z − a)(z − b) , with a 6= b ,
yields

Hf (z) =
z3 − 3 a b z + a b(a+ b)

3 z2 − 3 (a+ b) z + a2 + a b+ b2
,

which is conjugated to the map z −→ z3 via the Möbius transformation M(z) = z−a
z−b .

Consequently, J (Hf ) is the straight line in the complex plane corresponding to the
locus of points equidistant from a and b .
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3.4. Convex acceleration of Whittaker’s method. Convex acceleration of
Whittaker’s method is an order two iterative map given by

Wf (z) = z − f(z)

2f ′(z)
(2− Lf (z)) = z − 1

2
uf (z)(2− Lf (z)) .

The next four pictures show the basins of attraction of the roots when we apply
Whittaker’s iterative map to the corresponding polynomials.

f(z) = z2 − 1 f(z) = z3 − 1

f(z) = z3 − z f(z) = z3 + 0.5z − 1.5

From its geometrical interpretation for real functions, Whittaker’s method is also
known as the parallel–chord method. ( See [41, p. 181].)

For the quadratic polynomial f(z) = (z − a)(z − b) , with a 6= b , Whittaker’s
iterative map is conjugated to the map

z −→ z4 + 2z3 + 2z2

2z2 + 2z + 1

via the Möbius transformation M(z) = z−a
z−b .

3.5. Double convex acceleration of Whittaker’s method. The double con-
vex acceleration of Whittaker’s method is an order 3 iterative map given by

W2,f (z) = z − 1

4
uf (z)

(

2− Lf (z) +
4 + 2Lf (z)

2− Lf (z)(2− Lf (z))

)

.

For the quadratic polynomial f(z) = (z−a)(z− b) , with a 6= b , the iterative map
W2,f is conjugated to the map

z −→ z8 + 4z7 + 8z6 + 8z5 + 4z4

4z4 + 8z3 + 8z2 + 4z + 1

via the Möbius transformation M(z) = z−a
z−b .
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The next picture shows the basins of attraction of the roots when we apply the
iterative map W2,f to the polynomial f(z) = z2 − 1 .

3.6. Chebyshev’s iterative map. This iterative map is also known as the super–
Newton method. It is an element of Schröder’s family of iterative maps Sσ . (See Section
7.1.) In fact, this method corresponds to the iterative map S3 . Therefore, it is an order
3 iterative map given by

Chebyf (z) = z − uf (z)
(

1 +
1

2
Lf (z)

)

.

The next four pictures show the basins of attraction of the roots when we apply
Chebyshev’s iterative map to the corresponding polynomials.

f(z) = z2 − 1 f(z) = z3 − 1

f(z) = z3 − z f(z) = z3 + 0.5z − 1.5

Chebyshev’s iterative map is also known as Euler–Chebyshev’s method. From its
interpretation for real functions, it is furthermore known as the method of tangent
parabolas. (See [55].)

Chebyshev’s method applied to the quadratic polynomial f(z) = (z − a)(z − b) ,
with a 6= b , is conjugated to the map
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S3(z) =
z4 + 2z3

2z + 1

via the Möbius transformation M(z) = z−a
z−b .

3.7. Super–Halley iterative map. The super–Halley iterative method is also
known as the convex acceleration of Newton’s method. It is an order 3 iterative map
given by

SHf (z) = z − uf (z)
(

1 +
Lf (z)

2(1− Lf (z))

)

.

The next three pictures show the basins of attraction of the roots when we apply
super–Halley iterative map to the corresponding polynomials.

f(z) = z3 − 1 f(z) = z3 − z f(z) = z3 + 0.5z − 1.5

For the quadratic polynomial f(z) = (z − a)(z − b) , with a 6= b , the super–
Halley iterative map is conjugated to the map z −→ z4 via the Möbius transformation
M(z) = z−a

z−b . Consequently, J (SHf ) is the straight line in the complex plane corre-
sponding to the locus of points equidistant from a and b .

3.8. Midpoint iterative map. The midpoint iterative map is an order 3 iterative
map given by

Mdpf (z) = z − f(z)

f ′
(

z − f(z)
2f ′(z)

) = z − f(z)

f ′
(
z − 1

2uf (z)
) .

The next three pictures show the basins of attraction of the roots when we apply
midpoint iterative map to the corresponding polynomials.

f(z) = z3 − 1 f(z) = z3 − z f(z) = z3 + 0.5z − 1.5
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For the quadratic polynomial f(z) = (z−a)(z− b) , with a 6= b , midpoint method
Mdpf , yields

Midpoint applied to the polynomial f(z) = (z − a)(z − b) , with a 6= b , yields the
rational map

Mdpf (z) =
z3 − 3 a b z + a b (a+ b)

3z2 − 3(a+ b)z + a2 + ab+ b2
,

which is conjugated to the simplest map z −→ z3 via the Möbius transformation
M(z) = z−a

z−b , . Consequently, J (Mdpf ) is the straight line in the complex plane
corresponding to the locus of points equidistant from a and b .

3.9. Traub–Ostrowski’s iterative map. Traub–Ostrowski’s iterative map is an
order 4 iterative map given by

TOf (z) = z − uf (z)
f(z − uf (z))− f(z)
2f(z − uf (z))− f(z)

.

The next three pictures show the basins of attraction of the roots when we apply
Traub–Ostrowski’s iterative map to the corresponding polynomials.

f(z) = z3 − 1 f(z) = z3 − z f(z) = z3 + 0.5z − 1.5

For the quadratic polynomial f(z) = (z−a)(z−b) , with a 6= b , Traub–Ostrowski’s
iterative map is given by

TOf (z) =
z4 − 6abz2 + 4ab(a+ b)z − ab(a2 + ab+ b2)

4 z3 − 2(a+ b+ 2) z2 + 2(a+ b+ a2 + b2) z − (a3 + a2 b+ ab2 + b3)
,

which is conjugated to the map z −→ z4 via the Möbius transformation M(z) = z−a
z−b .

Consequently, J (TOf ) is the straight line in the complex plane corresponding to the
locus of points equidistant from a and b .

3.10. Jarratt’s iterative map. Jarratt’s iterative map is an order 4 iterative
map given by

Jf (z) = z − 1

2
uf (z) +

f(z)

f ′(z)− 3f ′(z − 2
3uf (z))

.

Jarratt’s method applied to the polynomial f(z) = (z − a)(z − b) , with a 6= b ,
yields
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Jf (z) =
z4 − 6abz2 + 4ab(a+ b)z − ab(a2 + ab+ b2)

4 z3 − 2(a+ b+ 2) z2 + 2(a+ b+ a2 + b2) z − (a3 + a2 b+ ab2 + b3)
,

which is conjugated to the map z −→ z4 via the Möbius transformation M(z) = z−a
z−b .

Consequently, J (Jf ) is the straight line in the complex plane corresponding to the
locus of points equidistant from a and b .

3.11. Inverse–free Jarratt’s iterative map. The inverse–free Jarratt’s iter-
ative map is an order 4 iterative map which is obtained as follows. Let hf (z) =
f ′
(
z − 2

3uf (z)
)
− f ′(z)

f ′(z)
. Then this algorithm is given by

IJf (z) = z − uf (z) +
3

4
uf (z)hf (z)

(

1− 3

2
hf (z)

)

.

Inverse–free Jarratt’s iterative map applied to the polynomial f(z) = (z−a)(z−b) ,
with a 6= b , yields the rational map

IJf (z) =
z4 − 6abz2 + 4ab(a+ b)z − ab(a2 + ab+ b2)

4 z3 − 2(a+ b+ 2) z2 + 2(a+ b+ a2 + b2) z − (a3 + a2 b+ ab2 + b3)
,

which is conjugated to the map z −→ z4 via the Möbius transformation M(z) = z−a
z−b .

Consequently, J (IJf ) is the straight line in the complex plane corresponding to the
locus of points equidistant from a and b .

4. The Scaling Theorem

Concerning the conjugacy classes of the iterative root–finding maps presented in
Section 3, we have the following result.

Theorem 4.1. (Scaling Theorem) Let T (z) = αz + β , with α 6= 0 , be an affine
map on the complex plane, and let λ ∈ C be a non–zero constant. Let f(z) be a poly-
nomial; define the polynomial g(z) = λ(f ◦T )(z) . Let F (z) denote any of the iterative
root–finding maps described above. Then the iterative root–finding maps Ff and Fg ,
which are obtained applying F to f and g , respectively, are affinely conjugated by T .
In other words, T ◦ Ff ◦ T−1(z) = Ff (z) (scaling equation), for all z .

Proof. We give the proofs for Newton’s, Schröder’s, and the midpoint iterative maps.
For the remaining iterative root–finding maps presented in Section 3, the arguments
are similar.

In the case of Newton’s iterative root–finding map, we have

T ◦Ng ◦ T−1(z) = z − αug(T−1(z)) = Nf (z) ;

in the case of Schröder’s iterative root–finding map, we have
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T ◦Mg ◦ T−1(z) = z − α ug(T
−1(z))

1− Lg(T−1(z))

= z − uf (z)

1− Lf (z)
= Mf (z) ;

and in the case of the midpoint iterative map we have

T ◦Mdpg ◦ T−1(z) = z − α g(T−1(z))

g′
(
T−1(z)− 1

2ug(T
−1(z))

) .

Using a Taylor series, we have

g′(T−1(z)− k ug(T−1(z))) = g′(T−1(z)− k 1

α
uf (z))

= g′(T−1(z))− g′′(T−1(z))

(
1

α
k uf (z)

)

+

1

2!
g′′′(T−1(z))

(
1

α
k uf (z)

)2

+ · · ·

= αf ′(z)− α2f ′′(z)
(
1

α
kuf (z)

)

+

α3
1

2!
f ′′′(z)

(
1

α
k uf (z)

)2

+ · · ·

= α

(

f ′(z)− f ′′(z) (k uf (z)) +
1

2!
f ′′′(z) (k uf (z))

2
+ · · ·

)

= αf ′ (z − k uf (z)) .

Setting k = 1
2 in the Taylor series above, we obtain g′(T−1(z)− 1

2ug(T
−1(z))) =

αf ′(z − 1
2uf (z)) . Therefore,

T ◦Mdpg ◦ T−1(z) = z − α f(z)

αf ′
(
z − 1

2 uf (z)
) =Mdpf (z) ,

which completes the proof.

5. Two Iterative root–finding maps which do not satisfy the Scaling

Theorem

In this section we give two iterative root–finding maps which do not satisfy the
Scaling Theorem.
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5.1. Stirling’s iterative map. Stirling’s iterative map is an order 2 iterative
map given by

Stf (z) = z − f(z)

f ′(z − f(z)) .

Now we have

T ◦ Stg ◦ T−1(z) = z − α g(T−1(z))

g′(T−1(z)− g(T−1(z)))
,

and it is easy to see that this method does not satisfy the scaling equation.
The next three pictures show the basins of attraction of the roots when we apply

Stirling’s iterative map to the corresponding polynomials.

f(z) = z2 − 1 f(z) = z3 − 1 f(z) = z3 − z
For the quadratic polynomial f(z) = (z−a)(z−b) , with a 6= b , Stirling’s iterative

map is given by

Stf (z) =
2z3 − (2a+ 2b+ 1)z2 + 2abz + ab

2z2 − 2(a+ b+ 1)z + a+ 2ab+ b
,

which is conjugated to the map

z −→ z3 + (2a− 2b− 1)z2

(2a− 2b+ 1)z − 1

via the Möbius transformation M(z) = z−a
z−b .

5.2. Steffensen’s iterative map. Steffensen’s iterative map is an order 2 itera-

tive map obtained as follows. Defining gf (z) =
f(z + f(z))− f(z)

f(z)
, this algorithm is

given by

Steff (z) = z − f(z)

gf (z)

= z − f(z)2

f(z + f(z))− f(z) .

The next four pictures show the basins of attraction of the roots when we apply
Steffensen’s iterative map to the corresponding polynomials.
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f(z) = z2 − 1 f(z) = z3 − 1

f(z) = z3 − z f(z) = z3 + 0.5z − 1.5

As in case of Stirling’s method, we see that this algorithm does not satisfy the
scaling equation.

Steffensen’s iterative map apply to the polynomial f(z) = (z − a)(z − b) , with
a 6= b , yields the rational map

Stf (z) =
z3 − (a+ b− 1)z2 + a b z − a b
z2 − (a+ b− 2)z − (a− ab+ b)

,

which is conjugated to the map

z −→ z3 − (a− b+ 1)

(1− a+ b)z − 1

via the Möbius transformation M(z) = z−a
z−b .

6. Three third–order iterative methods whichdo not require the use of

second derivatives

We consider three third–order iterative root–finding methods that do not require
the use of second derivatives which, for n > 0 , are given by







wn = zn − f(zn)
f ′(zn)

,

zn+1 = wn − f(wn)
f ′(zn)

,






wn = zn − f(zn)
f ′(zn)

,

zn+1 = zn − 2f(zn)
f ′(zn)+f ′(wn)

,

and



REVIEW OF SOME ITERATIVE ROOT–FINDING METHODS... 21







wn = zn − f(zn)
2f ′(zn)

,

zn+1 = zn − f(zn)
f ′(wn)

.

These three third–order root–finding iterative methods are studied in [25], [41],
[45], [59].

The iterative maps defining the preceding three iterative methods are given by

M1,f (z) = z − uf (z)−
f (z − uf (z))

f ′(z)
,

M2,f (z) = z − 2f(z)

f ′(z) + f ′ (z − uf (z))
, and

M3,f (z) = z − f(z)

f ′
(
z − 1

2uf (z)
) ,

respectively.
The next three pictures show the basins of attraction of the roots when we apply

iterative maps Mf,j , with j = 1, 2, 3 , to the polynomial f(z) = z3 − 1 .

M1,f–method for f(z) = z3 − 1 M2,f–method for f(z) = z3 − 1

M3,f–method for f(z) = z3 − 1

Observe that when we apply the iterative maps Mi,f (with i = 1, 2, 3) to a poly-
nomial, we obtain a rational map on the Riemann sphere.

We now have the following.

Theorem 6.1. (Scaling Theorem) Let f(z) be an analytic function on the Rie-
mann sphere, and let T (z) = αz + β , with α 6= 0 , be an affine map. Define
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g(z) = λ(f ◦ T (z)) . Then T ◦Mi,g ◦ T−1 = Mi,f (z) , that is, Mi,f and Mi,g are
conjugated by T , with i = 1, 2, 3 .

Proof. We give the proof only for the iterative map M3,f . The arguments for the
proofs of the maps Mj,f (with j = 1, 2 ) are similar. We have

T ◦M3,g ◦ T−1(z) = z − α g(T−1(z)

g′
(
T−1(z)− 1

2uf (z)
)

z − α f(z)

αf ′
(
z − 1

2uf (z)
)

= M3,f (z) .

7. Families of iterative maps

There are many iterative maps for solving non–linear equations which depend on
one or more complex parameter(s). In this case, we speak of families of iterative root–
finding maps.

7.1. Schröder’s family of iterative maps. Let f be an analytic function on
the Riemann sphere, and let σ be a positive integer greater than or equal to two. For
each σ , with σ = 1, 2, 3, . . . , Schröder’s iterative map Sσ,f is an algorithm of order
σ .

We next show how to obtain Schröder’s iterative maps. Let F be an analytic
function, and let |h| be sufficiently small. Then by the Taylor expansion

F (z + h) = F (z) +

∞∑

n=1

bn(z)h
n = F (z) +B(z)

where bn(z) = F (n)(z)
n! , with n = 1, 2, . . . , the function B(z) may be considered as

a formal power series in the variable h whose coefficients depend on z . If b1(z) =
F ′(z) 6= 0 , then B(z) has a formal inverse B−1(z) . Thus we may write

B−1(z) =

∞∑

n=1

cn(z)h
n ,

where cn(z) =
1
n
res(B−n) , with n = 1, 2, . . . , by the Lagrange–Bürmann formula.

Using the approximation above for an analytic function, we may define Schröder’s
iterative maps of order σ = 2, 3, . . . associated to f by

Sσ,f (z) = z +

σ−1∑

k=1

ck(z) (−f(z))k ,

where
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cn(z) =
1

k!

(
1

f ′(z)

d

dz

)(k−1)
1

f ′(z)

and

(
1

f ′(z)

d

dz

)(k−1)

=

(
1

f ′(z)

d

dz

(
1

f ′(z)

d

dz

(

· · ·
(

1

f ′(z)

d

dz

)

· · ·
)))

︸ ︷︷ ︸

(k−1)− factors

.

The coefficients cn(z) are analytic functions in every region U ⊂ C in which
f ′(z) 6= 0 .

For example, Schröder’s iterative maps S3,f and S4,f associated to f are given
by

S3,f (z) = z − f(z)

f ′(z)
− f ′′(z)

2f ′(z)3
f(z)2 = z − uf (z)

(

1 +
1

2
Lf (z)

)

,

which is Chebyshev’s method, and by

S4,f (z) = z − f(z)

f ′(z)
− f ′′(z)

2f ′(z)3
f(z)2 −

(
3f ′′(z)2 − f ′(z)f ′′′(z)

)

6f ′(z)5
f(z)3 ,

respectively. Note that S2,f = Nf , or in other words Schröder’s iterative map of order
2 corresponds to Newton’s iterative map.

In order to obtain a more explicit formula for Sσ,f , set h1,f (z) = 1 and hk+1,f (z) =
h′k,f (z)f

′(z)− (2k − 1)hk,f (z)f
′′(z) , with k = 1, 2, . . . . It then follows that

1

f ′(z)

(
hk,f (z)

f ′(z)2k−1

)′
=
hk+1,f (z)

f ′(z)2k+1
.

Thus the formula for Sσ,f becomes

Sσ,f (z) = z +

σ−1∑

k=1

(−1)k
k!

hf,k(z)

(f ′(z))2k−1
(f(z))k .

For a proof that Schröder’s family of iterative methods satisfies the Scaling Theo-
rem, see [43].

The next three pictures show the basins of attraction of the roots when we apply
the iterative map S3,f to the corresponding polynomials,
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f(z) = z3 − 1 f(z) = z3 − z f(z) = z3 + 0.5z − 1.5

and the next three pictures show the basins of attraction of the roots when we apply
the iterative map S4,f to the corresponding polynomials,

f(z) = z3 − 1 f(z) = z3 − z f(z) = z3 + 0.5z − 1.5

7.2. König’s familiy of iterative maps. Consider König’s family of iterative
maps. For an analytic function f on the Riemann sphere and a positive integer σ

greater than or equal to two, König’s iterative map of order σ , denoted Kσ,f , associ-
ated to f is defined by

Kσ,f (z) = z + (σ − 1)

(
1

f(z)

)(σ−2)

(
1

f(z)

)(σ−1)
.

Note that K2,f = Nf (Newton’s map) and that K3,f = Hf (Halley’s map). For
σ = 4 we have

K4,f (z) = z − 3f(z)
(
f(z)f ′′(z)− 2f ′(z)2

)

6f(z)f ′(z)f ′′(z)− 6f ′(z)3 − f(z)2f ′′′(z) .

It is clear that the construction of Kσ,f requires the computation of the first σ−1
derivatives of f . Letting h1,f (z) = 1 and hk+1,f (z) = h′k,f (z)f(z) − khk,f (z)f

′(z) ,
for k = 1, 2, . . . , σ − 1 , we have

(
1

f(z)

)(k)

=
hk+1,f (z)

f(z)k+1
.

Thus we may write
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Kσ,f (z) = z + (σ − 1)
hσ−1(z)f(z)

hσ(z)
.

For a proof that König family of iterative methods satisfies the Scaling Theorem,
see [43], as well as [16].

The next three pictures show the basins of attraction of the roots when we apply
the iterative map K4,f to the corresponding polynomials.

f(z) = z3 − 1 f(z) = z3 − z f(z) = z3 + 0.5z − 1.5

7.3. A family of third–order iterative methods. We consider the family of
third–order iterative root–finding methods

zn+1 =Mf,θ,c(zn) = zn −
(

1 +
Lf (zn)

2 (1− θLf (zn))
+ cLf (zn)

2

)

uf (zn) ,

where z0 is an initial guess, and θ and c are complex parameters both to be chosen
conveniently for each case. This family of iterative root–finding methods is induced by
the family of iterative maps

Mf,θ,c(z) = z −
(

1 +
Lf (z)

2 (1− θLf (z))
+ cLf (z)

2

)

uf (z) .

Observe that when we apply the iterative maps Mf,θ,c to a polynomial, we obtain
a rational map on the Riemann sphere.

As particular cases, this family of third–order iterative methods includes the fol-
lowing (see [3]).

(1) When c = 0 and the parameter θ is real and non–negative, we obtain the
family of third-order iterative functions Mf,θ(z) =Mf,θ,0(z) studied in [28],
which is called Chebyshev–Halley’s family of iterative root–finding maps

CHf,θ =Mf,θ(z) = z −
(

1 +
Lf (z)

2(1− θLf (z))

)

uf (z) .

In particular, we have
(a) The well known iterative function Chf due to Chebyshev

Chf (z) = z −
(

1 +
1

2
Lf (z)

)

uf (z)
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is obtained from the family above when θ = 0 .
(b) The well known iterative function Hf due to Halley.

Hf (z) = z − 2f(z)f ′(z)

2f ′(z)2 − f(z)f ′′(z)

is obtained from the family above when θ = 1
2 . The dynamics of Halley’s

iterative function is studied in [16] and [47].
(c) Another third–order iterative function is the super–Halley iterative func-

tion, denoted SHf , which is given by

SHf (z) = z −
(

1 +
Lf (z)

2(1− Lf (z))

)

uf (z) ,

and is obtained from the family above when θ = 1 . (See [29].)
(d) Finally, Newton’s method is obtained as the limit case when θ −→ ±∞ .

(2) When c is a non–zero constant and θ = 0 , we obtain the so–called c –iterative
methods

Mf,c(z) = z −
(

1 +
1

2
Lf (z) + cLf (z)

2

)

uf (z) ,

in which case Mf,c = Mf,0,c . This family of iterative map is introduced
in [2] and [24].

The next two pictures show the basins of attraction of the roots when we
apply c–iterative method to the corresponding polynomials.

c–method for z2 − 1 c–method for z3 − 1

We now show that Chebyshev–Halley’s family of iterative root–finding maps sat-
isfies the Scaling Theorem.

Theorem 7.1. (Scaling Theorem for Chebyshev–Halley’s family) Let T (z) = αz+
β , with α 6= 0 , be an affine map on the complex plane, and let λ ∈ C be a non–zero
constant. Let f(z) be polynomial; define the polynomial g(z) = λ(f ◦ T )(z) . Then
Mf,θ,c and Mg,θ,c are affinely conjugated by T , that is, T ◦Mg,θ,c◦T−1(z) =Mf,θ,c(z) ,
for all z .
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Proof. We have

T ◦Mg,θ,c ◦ T−1(z) = z − αug(T−1(z))

(

1 +
Lg(T

−1(z))

2(1− θLg(T−1(z)))
+ cLg(T

−1(z))2
)

= z − uf (z)
(

1 +
Lf (z)

2(1− θLf (z))
+ cLf (z)

2

)

= Mf,θ,c(z) .

Therefore, the family of iterative root–finding maps Mf,θ,c satisfies the Scaling
Theorem.

For the quadratic polynomial f(z) = (z − a)(z − b) , with a 6= b , we have that
CHf,θ(z) is conjugated to the map

z −→ z4 + 2(1− θ)z
2(1− θ)z + 1

via the Möbius transformation M(z) = z−a
z−b .

7.4. A King family of multipoint iterative methods. The following order
four multipoint family of iterative root–finding methods is studied by R. King in [34].

Kβ,f (z) = z − uf (z)−
f (z − uf (z))

f ′(z)
· f(z) + βf (z − uf (z))
f(z) + (β − 2)f (z − uf (z))

where β is a complex parameter. The family Kβ,f contains Traub–Ostrowski’s itera-
tive map, which is obtained when β = 0 . In other words,

TOf (z) = K0,f (z) = z − uf (z)−
f(z − uf (z))

f ′(z)

f(z)

f(z)− 2f(z − uf (z))

= z − uf (z)
f(z − uf (z))− f(z)
2f(z − uf (z))− f(z)

.

Theorem 7.2. (Scaling Theorem) Let T (z) = αz + β , with α 6= 0 , be an affine
map on the complex plane, and let λ ∈ C be a non–zero constant. Let f(z) be a
polynomial; define the polynomial g(z) = λ(f ◦ T )(z) . Then Kβ,f and Kβ,g are
affinely conjugated by T , or in other words T ◦Kβ,g ◦ T−1(z) = Kβ,f (z) , for all z .

Proof. We have
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T ◦Kβ,g ◦ T−1(z) = z − αug(T−1(z))− αg
(
T−1(z)− ug(T−1(z))

)

g′(T−1(z))
·

g(T−1(z)) + βg
(
T−1(z)− ug(T−1(z))

)

g(T−1(z)) + (β − 2)g (T−1(z)− ug(T−1(z)))

= z − uf (z)− α
f(z − uf (z))

αf ′(z)
· f(z) + f(z − uf (z))
f(z)− f(z − uf (z))

= Kβ,f (z) .

Therefore, the family of iterative root–finding maps Kβ,f satisfies the Scaling
Theorem.

For the quadratic polynomial f(z) = (z − a)(z − b) , with a 6= b , we have that
Kβ,f is conjugated to the one–parameter family of rational maps

z −→ z6 + (β + 2)z5 + (1 + 2β)z4

(1 + 2β)z2 + (β + 2)z + 1

via the Möbius transformation M(z) = z−a
z−b .

7.5. Another King family of multipoint iterative methods. Let δ , a1 , a2
and a3 be complex parameters. Define the following family of iterative root–finding
maps

K̃δ,a1,a2,a3,f (z) = z − a1uf (z)− a2
f(z − δuf (z))

f ′(z)
− a3

(
f(z−δuf (z))

f ′(z)

)2

uf (z)
.

For δ = 1 , a1 = 1 , a2 = 1 and a3 = 2 , we obtain the following root–finding
iterative method

K̃f (z) = z − uf (z)−
f(z − uf (z))

f ′(z)

f(z) + 2f(z − uf (z))
f(z)

.

Theorem 7.3. (Scaling Theorem) Let T (z) = αz+β , with α 6= 0 , be an affine map
on the complex plane, and let λ ∈ C be a non–zero constant. Let f(z) be a polynomial;

define the polynomial g(z) = λ(f ◦ T )(z) . Then K̃δ,a1,a2,a3,f and K̃δ,a1,a2,a3,g are

affinely conjugated by T , that is, T ◦ K̃δ,a1,a2,a3,g ◦ T−1(z) = K̃δ,a1,a2,a3,f (z) , for all
z .

Proof. We have



REVIEW OF SOME ITERATIVE ROOT–FINDING METHODS... 29

T ◦ K̃δ,a1,a2,a3,g ◦ T−1(z) = z − αa1ug(T−1(z))− αa2
g(T−1(z)− δug(T−1(z)))

g′(T−1(z))
−

αa3

(
g(T−1(z)−δug(T−1(z)))

g′(T−1(z))

)2

ug(T−1(z))

= z − a1uf (z)− αa2
f(z − δuf (z))

αf ′(z)
− δa3

(
f(z−δuf (z))

αf ′(z)

)2

1
α
uf (z)

= K̃δ,a1,a2,a3,f (z) ,

which proves that the family of iterative root–finding maps K̃δ,a1,a2,a3,f satisfies the
Scaling Theorem.

7.6. A Jarratt family of iterative root–finding methods. Any method (a
member) contained in the Jarratt family is an order four iterative root–finding method.

Let hf (z) =
f ′(z− 2

3uf (z))−f
′(z)

f ′(z) , and let β be a complex parameter. Define a the

Jarratt family of iterative root–finding maps by

Ψf,β(z) = z − uf (z) +
3

4
uf (z)hf (z)

1 + βhf (z)

1 +
(
3
2 + β

)
hf (z)

.

This family contains Jarratt’s iterative map, which is obtained by setting β = 0 .
For β = − 3

2 , we obtain the inverse–free Jarratt’s map.

Theorem 7.4. Let T (z) = αz + β , with α 6= 0 , be an affine map on the complex
plane, and let λ ∈ C be a non–zero constant. Let f(z) be polynomial; define the
polynomial g(z) = λ(f ◦ T )(z) . Then the Jarratt families of iterative root–finding
methods Ψf,β and Ψg,β are affinely conjugated by T , that is, T ◦ Ψg,β ◦ T−1(z) =
Ψf,β(z) , for all z .

Proof. We have

T ◦Ψg,β ◦ T−1(z) = z − αug(T−1(z)) +

α
3

4
ug(T

−1(z))hg(T
−1(z))

1 + βhg(T
−1(z))

1 +
(
3
2 + β

)
hg(T−1(z))

= z − uf (z) +
3

4
uf (z)hf (z)

1 + βhf (z)

1 +
(
3
2 + β

)
hf (z)

= Ψf,β(z) ,

and hence the family Ψf,β satisfies the Scaling Theorem.
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For the quadratic polynomial f(z) = (z−a)(z− b) , with a 6= b , the iterative map
Ψf,β(z) is conjugated to the map

z −→ 3z6 + (6− 4β)z5 + (3− 8β)z4

(3− 8β)z2 + (6− 4β)z + 3

via the Möbius transformation M(z) = z−a
z−b .

7.7. A Steffensen family of multipoint iterative root–finding maps. De-

fine gβ,f (z) =
f(z + βf(z))− f(z)

βf(z)
, where β is a complex parameter. Define the

multipoint family of iterative root–finding maps Λf (z) by

Λβ,f (z) = z − f(z)

gf (z)
= z − βf(z)2

f(z + βf(z))− f(z) .

Any method (a member) contained in this family is an order 2 iterative root–finding
method. This family contains, as a particular case, Steffesen’s map, which is obtained
by setting β = 1 . Note that this family of iterative methods does not satisfy the
Scaling Theorem.

For the quadratic polynomial f(z) = (z−a)(z− b) , with a 6= b , the iterative map
Λf (z) is given by

Λβ,f (z) =
βz3 − (aβ + bβ − 1)z2 + abβz − ab
βz2 − (aβ + bβ − 2)z + abβ − a− b ,

which is conjugated to the map

z −→ z3 − (aβ − bβ + 1)z2

(aβ − bβ − 1)z + 1

via the Möbius transformation M(z) = z−a
z−b .

7.8. A Murakami family of iterative root–finding maps. Let

w2(z) =
f(z)

f ′(z − uf (z))
,

w3(z) =
f(z)

f ′(z + βuf (z) + γw2(z))
,

ψ(z) =
f(z)

b1f ′(z) + b2f ′(z − uf (z))
,

where β , γ , b1 and b2 are complex parameters. We define a Murakami family of the
iterative root–finding maps by

Mkf (z) = z − a1uf (z)− a2w2(z)− a3w3(z)− ψ(z) ,
where a1 , a2 and a3 are complex parameters.
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A proof that the Scaling Theorem holds for this family of iterative root–finding
maps is obtained through a great deal of calculations

8. Constructing attracting periodic orbits for three third–order iterative

methods

The problem of the existence of periodic orbits for Newton’s iterative map associ-
ated to real polynomials was first studied by B. Barna. (See [9].) For other contribu-
tions to this problem, see [31]. In [9], we find the well known examples given by the
polynomials p(z) = 3z5 − 10z3 + 23z and p(z) = 11z6 − 34z4 + 39z2 whose Newton
maps have {−1, 1} as a superattracting periodic orbit of period two. Another example

of such a polynomial is given by f(z) = z3 − z +
√
2
2 .

The next two picture show the basin of attraction of the roots when we apply
Newton’s iterative map to the corresponding polynomials.

p(z) = 3z5 − 10z3 + 23z p(z) = z2 − z +
√
2
2

In [44], a general method for constructing polynomials whose Newton maps have
a superattracting periodic orbit of period n > 2 is presented.

Now we are interested in constructing a periodic orbit for the iterative methods
Mk,f given in Section 6.

For a proof of the following results, see [6].

Proposition 8.1. Let Ω = {x1, x2, . . . , xn} be a set of n distinct complex num-
bers, and let f be a complex analytic function. Then Ω is a periodic orbit of period
n of iteration maps Mk,f (with k = 1, 2, 3 ) if and only if







f ′(xi) =
f(xi) + f(xi − uf (xi))

xi − xi+1
, with i = 1, . . . , n− 1 ,

f ′(xn) =
f(xn) + f(xn − uf (xn))

xn − x1

(8.1)

holds for M1,f ;







f ′(xi) + f ′(xi − uf (xi)) =
2f(xi)

xi − xi+1
, with i = 1, . . . , n− 1 ,

f ′(xn) + f ′(xn − uf (xn)) =
2f(xn)

xn − x1

(8.2)

holds for M2,f ;
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





f ′
(
xi − 1

2 uf (xi)
)

=
f(xi)

xi − xi+1
with i = 1, . . . , n− 1 ,

f ′
(
xn − 1

2 uf (xn)
)

=
f(xn)

xn − x1

(8.3)

holds for M3,f .

Proposition 8.2. For any positive integer n > 2 and k = 1, 2, 3 , there exists a
polynomial fk of degree less than or equal to 3n − 1 for which Mk,fk has a periodic
orbit of period n .

Example 8.1. Let us give a polynomial f for which the iterative method M1,f

has a periodic orbit of period 2. For this, let x1 = 0 , and let x2 = 2 . We must
construct a polynomial f such that M1,f (0) = 2 and M1,f (2) = 0 . The polynomial

f is given by f(x) = 1 + x − 31

18
x2 +

17

18
x3 − 5

18
x4 +

1

18
x5 . A computation yields

M1,f (0) = 2 and M1,f (2) = 0 , that is, Ω = {0, 2} is a periodic orbit of period 2 for
the method M1,f (x) .

Example 8.2. Let us give a polynomial f for which the iterative method M2,f

has a periodic orbit of period 2. For this, we consider Ω = {x1, x2} , where x1 = 0
and x2 = 2 . The polynomial is given by f(x) = 1 − 1

2x − 3
4x

2 + 1
4x

3 . We have that
M2,f (0) = 2 and M2,f (2) = 0 , that is, Ω is a periodic orbit of period 2 for M2,f .

Proposition 8.3. Let f be a polynomial for which Mk,f (with k = 1, 2, 3 ) has
a periodic orbit of period n , say Ω = {x1, x2, . . . , xn} . If f ′′(xi) = 0 , for some i =
1, . . . , n , then Ω is a superattracting periodic orbit of period n for M1,f . If f

′′(xi) =
0 and f ′(xi) = f ′(xi − uf (xi)) for some i = 1, . . . , n , then Ω is a superattracting
periodic orbit of period n for M2,f . Finally, if f ′′(xi − 1

2uf (xi)) = 0 and f ′(xi) =

f ′(xi − 1
2uf (xi)) for some i = 1, . . . , n , then Ω is a superattracting periodic orbit of

period n for M3,f .

The following gives a procedure for constructing a superattracting periodic orbit
for the iterative methods Mi,f , with i = 1, 2, 3 .

Theorem 8.1. Let n > 2 be an integer. Then there exist polynomials f̃k (with
k = 1, 2, 3) of degree less than or equal to 3n (resp. 3n−1 ) such that when we apply the

iterative methods Mk,f , with k = 1, 3 , (resp. M2,f ) to f̃k , we have a superattracting
periodic orbit of period n for the corresponding iterative methods.

Example 8.3. . We continue with Example 8.1. For M1,f , we consider f̃(x) =
f(x)+a7f7(x) , where f is the polynomial given in Example 8.1 and a7 is a parameter

to be determined. The polynomial obtained in this case is f̃(x) = 1+x− 7

9
x3− 113

72
x4+

16

9
x5 − 31

72
x6 . Now M1,f̃ (0) = 2 and M1,f̃ (2) = 0, or in other words, Ω = {0, 2} is a
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periodic orbit of period 2 for M1,f̃ . On the other hand, an easy calculation shows that

(M2
1,f̃

)′(0) = 0 . Therefore, Ω is a superattracting periodic orbit of period 2 for M1,f̃ .

Example 8.4. For Example 8.2 and in order to construct a superattracting periodic
orbit for M2,f , we consider the polynomial f̃(x) = f(x) + a5f5(x) where f is the
polynomial given in Example 8.2 and a5 is a parameter to be determined. Using
the condition of Theorem 8.1, we have f̃(x) = f(x) + 3

64x
2(x − 2)2 . We have that

M2,f̃ (0) = 2 and that M2,f̃ (2) = 0 , that is, Ω = {0, 2} is a periodic orbit of period
2 for M2,f̃ . We finally have that Ω is a superattracting periodic orbit of period 2 for
M2,f̃ .

Since the hyperbolic periodic orbits of a rational map are stable, we have the
following.

Theorem 8.2. There is an open set U of the set consisting of the analytic complex
functions such that for any f ∈ U , the associated iterative method Mk,f (with k =
1, 2, 3 ) has an attracting periodic orbit of period greater than or equal to two.

Remark . For King’s and Jarratt’s iterative maps we have similar results. (See [5].)
We show a similar result for the family (7.3). (See [4].)
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Paris t.297 nov. 1983, 549 - 552.

[20] J. H. Curry, L. Garnett, D. Sullivan, On the iteration of a rational function: computer experiment

with Newton’s method. Comm. Math. Phys. 91 (1983), 267-277.

[21] V. Drakopoulos, On the additional fixed points of Schröder iteration functions associated with a
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2001, 205–220.

[25] M. Frontini and E. Sormani, Some variants of Newton’s method with third-order convergence.

Quad. 474/P Dip. Mat. Politecnico di Milano, (2001).
[26] W. J. Gilbert, Newton’s method for multiple roots. Comput. and Graphics, Vol. 18(2)(1994),

227–229.
[27] W. J. Gilbert, The complex dynamics of Newton’s method for a double root. Computers Math.

Applic., Vol. 22 (10)(1991), 115–119.
[28] J. M. Gutiérrez and M. A. Hernández, A family of Chebyshev–Halley type methods in Banach

spaces. Bull. Austral. Math. Soc., 55 (1997), 113–130.

[29] J. M. Gutiérrez and M. A. Hernández, An acceleration of Newton’s method: super–Halley method.
Appl. Math. Comput., 117 (2001), 223–239.

[30] F. v. Haesseler, H.-O. Peitgen, Newton’s Method and Complex Dynamical Systems. Newton‘s

Method and Dynamical Systems, ed. Heinz–Otto Peitgen. Kluwer Academic Publishers (1989),
3–58. First appeared in Acta Applicandae Mathematicae 13 (1988), 3–58.

[31] M. Hurley, Attracting orbits in Newton method. Trans. AMS 237 (1) (1986), 143–158.
[32] A. Emerenko, M. Lyubich, The dynamics of analytic transformations. Leningrad Math. J., Vol.

1 (3) (1990), 563-634.

[33] P. Henrici, Applied and computational compex analysis. Wiley, 1974.
[34] R. King, A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal., Vol.

10, Number 5, (1973), 876–879.

[35] K. Kneisl, Julia sets for the super-Newton method, Cauchy’s method and Halley’s method. Chaos,
Vol. 11, Number 2, June 2001, 359-370.

[36] H. T. Kung, J. F. Traub, Optimal order and efficiency for iterations with two evaluations. SIAM
J. Num. Anal., Vol. 13, Number 1 , (1976), 84–99.

[37] C. McMullen, Complex Dynamics and Renormalization. Annals of Mathematics Studies, Prince-

ton University Press 1994

[38] J. Milnor, Dynamics in One Complex Dimension: Introductory Lectures. Preprint #1990/5,
SUNY StonyBrook, Institute for Mathematical Sciences.

[39] J. Milnor, Dynamics in one complex variable: introductory lectures. Vieweg 1999
[40] S. Morosawa, Y. Nishimura, M. Taniguchi, and T. Ueda, Holomorphic Dynamics. Cambridge

University Press, 1999.

[41] J. M. Ortega, W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables.

Academic Press, 1970.

[42] A. M. Ostrowski, Solutions of equation in euclidean and Banach space. Academic Press, 1973.



REVIEW OF SOME ITERATIVE ROOT–FINDING METHODS... 35

[43] S. Plaza, Conjugacy classes of some numerical methods. Proyecciones, Vol. 20, N
o 1, (2001),

1-17.

[44] S. Plaza, V. Vergara, Existence of periodic orbits for the Newton’s method. Scientia, series A:

Mathematical Sciences, Vol. 7 (2001), 31–36.

[45] F.A. Potra and V. Pták, Nondiscrete induction and iterative processes. Research Notes in Math-

ematics, 103, Ed. Boston: Pitman (1984).
[46] F. Przytycki. Remarks on the simple connectedness of basins of sinks for iteration of rational

maps. Collection, Dynamical Systems and Ergodic Theory, Warsaw, 1989, Banch Center Publ. 23,

PWN, Warsaw (1989), 229–235.

[47] G. E. Roberts, J. Horgan-Kobelski, Newton’s versus Halley’s method: an approach via complex

dynamics. To appear in the International Journal of Bifurcation and Chaos.

[48] P. Roesch, Topologie locale des métthodes de Newton cubiques. Thése, École Normale Supérieure
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