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On distortion under hyperbolically convex maps

Alexander Vasil’ev

Abstract. We study the class of hyperbolically convex bounded univalent func-
tions with a boundary normalization in the unit disk U . In the paper we obtain
the lower estimate for the distortion in this class. A two-point distortion theorem

is also proved. The method of proofs is based on the reduced modulus of digons

and the modulus of annuli.

1. Introduction

We study the class H of all holomorphic and univalent functions f(z) in the unit
disk U = {z : |z| < 1} such that f(0) = 0, f ′(0) > 0, and f(U) is hyperbolically
convex (h-convex) in U . h-convexity means that each segment of the hyperbolic plane
U connecting two points of f(U) lies in f(U). Such domains are of great importance, in
particular, in the theory of Fuchsian groups [1] where the normal fundamental domain
of a Fuchsian group is h-convex.

An important property of h-convex functions is the invariance under the group
Möb(U) of conformal automorphisms of the unit disk. Namely, if f is h-convex, then
the mapping

σ ◦ f ◦ τ with σ, τ ∈ Möb(U)

is also h-convex. Therefore, it is always possible to achieve the normalization given
by the following boundary condition. Let us denote by Hc the class of all functions
from H with c = inf

w∈Urf(U)
|w| fixed. Roughly speaking, we fix the minimal distance

between the origin and the boundary of f(U). We are aimed at the application of
the extremal length method to solve extremal problems in this class. The class Hc

has been introduced in [9] where we have obtained growth theorems and estimated
the distortion under the maps from Hc. In the the standard class S of all univalent
functions f(z) = z+a2z

2+ . . . in U the Koebe function z(1± z)−2 plays an important
role. It turns out to be extremal in many problems, in particular, for estimates of the
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distortion in S. The function

kb(z) =
2bz

1− z +
√

(1− z)2 + 4b2z
= bz + b(1− b2)z2 + . . .

plays the role of the Koebe function in the class Hc, where b = 2c/(1 + c2) (see, e.g.
[9]). It maps U onto the hyperbolic half-plane

U r U

(
−1 + c2

2c
,
1− c2
2c

)
, c =

1−
√
1− b2
b

,

where U(ζ, r) = {z ∈ C : |z − ζ| < r}. In [9] we got the sharp upper bound for

|f ′(z)| for |z| < kb(
√
2 − 1) (note that kb(

√
2 − 1) >

√
2 − 1). The extremal function

is the canonical map kb(z) and its rotations. The lower estimate of |f ′(z)| has been

achieved by an easier function f(z) = cz for |f(z)| 6 (
√
2 − 1)c (what is true at least

for |z| 6 (1 + (2
√
2− 1)c2)/(3 + 2

√
2 + c2)). We also derived in [9] a general two-point

distortion theorem. The compact subclass H(α) of H with the inner normalization
(H(α) = {f ∈ H, f ′(0) = α}, α ∈ (0, 1] is fixed) has been earlier introduced and
considered by W. Ma, D. Minda, D. Mej́ıa, Ch. Pommerenke, and the author in [5]–
[9]. In [9] we also obtained the upper bound of |f ′(z)| in this class for |z| < G(α),

where G(α) is a function of α with G(α) >
√
2− 1. Recently, W. Ma and D. Minda [6]

repeated this result under a stronger condition |z| 6
√
2− 1 by a different method.

In this paper we are concerned with some distortion theorems making use of the
extremal length method in the form of the moduli of families of curves and the reduced
moduli. In particular, we obtain (with restriction |z| 6 (1 + 3c2)(3 + c2)) the lower
bound for |f ′(z)| in the class Hc.

2. Preliminaries

1. First, we observe that f ∈ H (or Hc) if and only if the function f∗(z) =
e−iθf(zeiθ), θ ∈ [−π, π], is also from the same class. This transformation is known as
the rotation.

A necessary and sufficient condition for an analytic function f to be h-convex
functions obtained by W. Ma and D. Minda in [5] is of the form

Re

(
1 +

zf ′′(z)

f ′(z)
+
zf ′(z)

f(z)

2|f(z)|2
1− |f(z)|2

)
>

1− |z|
1 + |z| > 0 (1)

in U .
It easily follows from the results of W. Ma and D. Minda [5] that c 6 |f ′(0)| 6 b

where the equality appears only for the functions w = cz and w = k∗b (z), respectively,
where k∗b stands for rotations of kb.

The functional D1(f, z) =
f ′(z)(1−|z|2)
1−|f(z)|2 is of importance in the theory of h-convex

functions. W. Ma and D. Minda [5] have given sharp estimates for |D1(f, z)| in the
class H(α). The upper bound for |D1(f, z)| in the class Hc is similar as it has been
shown in [9], but the lower bound is principally different, what we will observe further
on. The same phenomenon seems to be true in other cases of standard functionals, such
as |f(z)|, |f ′(z)|, in the classes Hc and H(α). If an estimate is given by the canonical
map in both classes the other one is also given by the canonical map for the class H(α)
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but by the map w = cz for the class Hc. We should say that such simple extremal
function does not imply similar simplicity of the proofs.

2. The method that we will use in the paper is based on the extremal length
method in its form of the moduli method. We are concerned with a notion which
appeared rather recently in [2, 4, 13] and, nowadays, is used for extremal problems
for conformal maps (see [12, 13, 14]). It is called the reduced modulus of a digon. We
define the reduced moduli of digons following E. G. Emel’yanov [2], G. V. Kuz’mina
[4], and A. Yu. Solynin [13].

A Stolz angle at ζ ∈ C is of the form

∆ζ(ψ, θ, r) = {z ∈ U(ζ, r) : | arg (z − ζ)− ψ| < θ},

(see these definitions in [11, 13]).
Let D be a hyperbolic simply connected domain in C with two finite fixed boundary

points a, b (maybe with the same support) on its boundary. All boundary elements, the
neighbourhoods of which we consider, are assumed to be one-point. We call such D a
digon. A hyperbolic simply connected domain in C with a single finite fixed boundary
points a and a fixed arc l on the boundary, a 6∈ l, is called a triangle. The digon D has
the inner angle ϕa with the vertex at a if ϕa = 2 sup θ, where the supremum is taken
over all Stolz angles ∆a(ψ, θ, r) (the part which lies in D for r sufficiently small).

Let us set S(a, ε), a connected component of D ∩ {|z − a| < ε}, such that a ∈
∂ S(a, ε). We denote by Dε1,ε2 the domain D r {S(a, ε1) ∪ S(b, ε2)} for sufficiently
small εj , j = 1, 2. Let M(Dε1,ε2) be the modulus of the family of arcs in Dε1,ε2 joining
the boundary arcs of S(a, ε1) and S(b, ε2) that lie in the circumferences |z − a| = ε1
and |z − b| = ε2. We choose the arcs so that each of them divides D into two triangles
with their vertices at a and b and with the opposite legs on this arc. If the limit

m(D, a, b) = lim
ε1,2→0

(
1

M(Dε1,ε2)
+

1

ϕa
log ε1 +

1

ϕb
log ε2

)
,

exists, then it is called the reduced modulus of the digon D, where ϕa = sup ∆a,
ϕb = sup∆b are the inner angles, and the supremum is taken over all Stolz angles
∆a and ∆b inscribed in D at a or b respectively. The existence of the limit is a
local characteristic ([13], Theorem 1.2) of the domain D. Suppose that there exists a
conformal map f(z) from the domain S(a, ε1) ⊂ D onto a circular sector, so that there
exists the angular limit f(a) which is the vertex of this sector and with the angle ϕa. If
the function f has the angular finite non-zero derivative f ′(a) we say that the domain
D is conformal at the point a. If the digon D is conformal at the points a, b, then the
limit in the definition of m(D, a, b) exists (see [13], Theorem 1.3).

Suppose that there exists a conformal map f(z) of the digon D (which is conformal
at a, b) onto a digon D′, so that there exist the angular limits f(a), f(b) with the
inner angles ψa and ψb at the vertices f(a) and f(b) which are also thought of as
the supremum over all Stolz angles inscribed in D′ with the vertices w1 = f(a) or
w2 = f(b) respectively. If the function f has the angular finite non-zero derivatives
f ′(a) and f ′(b), then ϕa = ψf(a), ϕb = ψf(b), and the reduced modulus exists and is
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changed by the rule

m(f(D), f(a), f(b)) = m(D, a, b) +
1

ψa
log |f ′(a)|+ 1

ψb
log |f ′(b)|.

If we suppose, moreover, that f has the expansion

f(z) = w1 + (z − a)ψa/ϕa(c1 + c2(z − a) + . . . )

about the point a, and the expansion

f(z) = w2 + (z − b)ψb/ϕb(d1 + d2(z − a) + . . . )

about the point b, then the reduced modulus of D is changed by the rule

m(f(D), f(a), f(b)) = m(D, a, b) +
1

ψa
log |c1|+

1

ψb
log |d1|,

where c1, d1 are some complex non-zero constants. Obviously, one can extend this
definition to the case of vertices with the infinite support.

3. We define now two problems about extremal partition of the disk Uc = {z :
|z| < c} by digons.

Let 0, B be punctures in Uc. We consider the family D1 of digons D in Uc such
that 0, B 6∈ D are two vertices of any D ∈ D1. All digons are supposed to have the
angles 2π at their vertices. We define the problem of minimizing the reduced modulus

min
D∈D1

m(D, 0, B)

There is a unique digon D∗1 = Uc r {(−c, 0] ∪ [|B|, c)}, rotated by the angle arg B,
that gives this minimum. The reduced modulus is calculated making use of a suitable
conformal map of D∗1 onto the digon C r [0,∞) of modulus zero with respect to its
vertices 0,∞.

m(D∗1 , 0, B) =
1

2π
log

c2|B|2
c2 − |B|2 .

Now we consider the family D2 of digons D in Uc such that 0, B 6∈ D and B is a
support of two vertices of any D with the inner angles π. We define the problem of
minimizing the reduced modulus

min
D∈D2

m(D,B,B)

There is a unique digon D∗2 = Uc r [0, cei arg B) that gives this minimum. One can
calculate this reduced modulus constructing a suitable conformal map as in the previous
case

m(D∗2 , B,B) =
2

π
log

|B|(c+ |B|)
c− |B| .
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3. Lower estimations for distortion

Theorem 3.1. Let f ∈ Hc, |z| := r.
(i) If

|z| 6 1 + 3c2

3 + c2
,

then ρ := |f(z)| 6 c.
(ii) If |f(z)| 6 c, then

|f ′(z)||f ′(0)| >
(ρ
r

)2 c2(1− r2)
c2 − ρ2 > c2

with the obvious extremal function f(z) ≡ cz.

Proof. Part (i) obviously follows from the inequality |f(z)| 6 kb(|z|). For (ii) we
consider the digon Dz = U r {(−1, 0] ∪ [r, 1)} with the vertices at 0 and r and with
the reduced modulus

m(Dz, 0, r) =
1

2π
log

r2

1− r2 .
Now we pose the problem of the extremal partition of Uc by the family of digons D1.
Functions from H are starlike, therefore the function |f(r)| increases in r ∈ [0, 1).
Moreover, the disk Uc ⊂ f(U). The domain D = Uc ∩ f(Dz) is a digon with the
vertices at 0, f(r) where it is conformal. It is admissible for the problem of minimizing
the reduced modulus in the family D1 with B = f(r).

Denote byDf = f(Dz), Df
ε = Df

r{(|w| < ε)∪(|w−f(r)| < ε)}, Dε = Dr{(|w| <
ε) ∪ (|w − f(r)| < ε)} for a sufficiently small ε. Then

m(Df , 0, f(r)) = lim
ε→0

(
1

M(Df
ε )

+
1

2π
log ε

)

and

m(D, 0, f(r)) = lim
ε→0

(
1

M(Dε)
+

1

2π
log ε

)
.

The quadrilaterals Df
ε and Dε have the common sides on the arcs of the circumferences

|w| = ε and |w − f(r)| = ε. Moreover, Dε ⊂ Df
ε . Therefore, M(Df

ε ) 6 M(Dε) and
m(Df , 0, f(r)) > m(D, 0, f(r)). This implies the following chain of inequalities:

m(Dz, 0, r)+
1

2π
log |f ′(r)||f ′(0)| = m(f(Dz), 0, f(r)) > m(D, 0, f(r)) >

1

2π
log

c2ρ2

c2 − ρ2 ,

which is equivalent to the first inequality of (ii). The function c2ρ2/(c2 − ρ2) increases
in ρ, thus, the inequality ρ > cr finishes the whole proof. ¤

The consideration of the family of digons D2 and observations of the preceding
proof lead to the following result.

Theorem 3.2. Let f ∈ Hc, |z| = r. If ρ := |f(z)| 6 c, then

|f ′(z)| >
(ρ
r

) (c+ ρ)(1− r)
(c− ρ)(1 + r)

> c, |D1(f, z)| >
c(1− r2)
1− c2r2 ,

with the obvious extremal function f(z) ≡ cz.
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For |f(z)| > c, the inequality Re zf ′(z)
f(z) > 1

2 (see [7]) implies the obvious estimates

|f ′(z)| > c

2r
and |D1(f, z)| >

(1− r2)c
2r(1− c2r2)

which are not sharp, thus, the problem in the rest of the unit disk is still open.

4. Two-point distortion

A two-variable characterization of functions fromH have been obtained by Ch. Pom-
merenke, D. Mej́ıa [7] and W. Ma, D. Minda [6]. In this section we collect some results
about two-point distortion under h-convex maps. The first theorem is obtained by the
author in [9].

Theorem 4.1. [9] Let f ∈ Hc and 0 < r1 < r2 < 1. Then
(i)

ρ2 − ρ1
1− ρ2ρ1

6
r2 − r1
1− r2r1

b+ ρ2+ρ1
1+ρ2ρ1

1 + b ρ2+ρ11+ρ2ρ1

,

where ρ1 = |f(r1)|, ρ2 = |f(r2)|, b =
2c

1 + c2
.

(ii) If −1 < −r1 6 0 < r2 < 1, and ρ1, ρ2 < c (this is true at least for r1, r2 <
1+3c2

3+c2 ),
then

ρ2 + ρ1
c2 + ρ2ρ1

>
r2 + r1

c(1 + r2r1)
.

In part (ii) we write ρ1 = |f(−r1)|. The equality appears for the functions w = k∗b (z)
in (i) and w = cz in (ii) respectively.

From this theorem, in particular, it follows that for f ∈ Hc the sharp lower estimate
of the growth is c|z| 6 |f(z)|. This result shows the qualitative difference of the class
Hc from H(α), where the lower estimation is given by the canonical map. The sharp
upper bound in Hc is given as follows |f(z)| 6 kb(|z|). The equality appears for the
functions w = cz and w = k∗b (z) respectively. If d(·, ·) is the Poincaré metric in U , then
from i) it follows that

d(|f(r1)|, |f(r2)|) 6 d(kb(r1), kb(r2)).

Another result connected with Theorem 4.1 states (see [9]) that

|D1(f, z)| 6
bρ2 + 2ρ+ b

ρ2 + 2bρ+ 1
,

where ρ = |f(z)|. The inequality is sharp for the function k∗b (z).
In the class of all holomorphic univalent in U functions with normalization f(0) = 0

we have the inequality (see [10])

ρ2
ρ1
6
r2(1− r1)2
r1(1− r2)2

,

for ρ1 = |f(r1)|, ρ2 = |f(r2)| and 0 < r1 < r2 < 1.
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The restriction |f(z)| < 1 in U leads to the following inequality

ρ2
ρ1
6

(
(1− ρ2)(1− r1)
(1− ρ1)(1− r2)

)2
r2
r1
.

The inequality cr 6 |f(r)| 6 r immediately implies a rough estimate of the ratio
|f(r2)|/|f(r1)| 6 r2/c r1, 0 < r1 < r2 < 1. For the sharp form of this we have the
following theorem.

Theorem 4.2. Let f ∈ Hc and 0 < r1 < r2 < 1. Then (i)
√
r2
r1
<
ρ2
ρ1
6

(bρ1 + 1)(ρ1 + b)(1 + ρ2)
2

(bρ2 + 1)(ρ2 + b)(1 + ρ1)2

(
(1− ρ2)(1− r1)
(1− ρ1)(1− r2)

)2
r2
r1
.

for ρ1 = |f(r1)|, ρ2 = |f(r2)|. The right-hand side is sharp and the equality appears for
the function w = k∗b (z).

(ii) If −1 < −r1 6 0 < r2 < 1, ρ1, ρ2 < c (this is true at least for r1, r2 <
1+3c2

3+c2 ),
then

ρ1(1− ρ22)2(1− bρ1)(b− ρ1)
(ρ2 + ρ1)(1 + ρ1ρ2)(1 + b(ρ2 − ρ1)− ρ1ρ2)2

>
r1(1− r2)2

(r2 + r1)(1 + r1r2)
.

In the part (ii) we write ρ1 = |f(−r1)|. The equality appears for the function w = k∗b (z).

Proof. Let U ′ = U r {0, r1, r2} and Γ be a family of Jordan closed curves that
separate in U ′ the points r1, r2 from 0 and ∂U which are homotopic on U ′ to the slit
along the segment [r1, r2]. We denote by m(Γ) the modulus of this family. Let G
be a doubly connected hyperbolic domain in U ′ associated with Γ, i.e. each closed
curve separating the boundary components of G is from Γ. Let us denote by M(G)
the modulus of G with respect to the family of curves in G separating its boundary
components. Then, it is known [3] that M(G) 6 M(D) = m(Γ), where D = U r

{(−1, 0] ∪ [r1, r2]}. Moreover, m(Γ) = 1
2

K

K′

(√
r1
r2

1−r2
1−r1

)
, where K(k) and K′(k) =

K(
√
1− k2) are the conjugated complete elliptic integrals.
Since functions from Hc are starlike, the inequality

|f(r1)| < |f(r2)| (2)

holds for r1 < r2.
We denote by D∗ the result of circular symmetrization of the domain f(D) with

respect to the positive real axis R
+. Since f ∈ Hc, the domain D∗ lies in U within

the domain kb(U). By the inequality (2) we have ρ1 < ρ2 and D∗ ⊂ D̃(ρ1, ρ2) :=

U r (Uc ∪ [−c, 0] ∪ [ρ1, ρ2]). Hence, M(D) = M(f(D)) 6 M(D∗) 6 M(D̃). By a
suitable conformal maps we calculate

M(D̃(ρ1, ρ2)) =
1

2

K

K′

(√
ρ1(bρ1 + 1)(ρ1 + b)

ρ2(bρ2 + 1)(ρ2 + b)

1− ρ22
1− ρ21

)
.

The function K

K′ (k) increases in k ∈ (0, 1). This leads to the inequality in the right-

hand side in (i). The function kb(z) obviously maps D onto D̃(kb(r1), kb(r2)) and gives
the equality in the above chain of inequalities. This yields the statement about the
extremality of kb(z) and finishes the proof of the right-hand side inequality of (i).
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Due to the result by D. Mej́ıa, Ch. Pommerenke [7] hyperbolically convex univalent
functions are starlike of the order 1/2. Hence,

d|f(r)|
dr

= |f(r)|Re f ′(r)

f(r)
>
|f(r)|
2r

. (3)

Integrating the inequality (3) we deduce the left-hand side inequality in (i) of Theorem
4.2.

Now we consider the family of Jordan closed curves on U ′′ = U r {0,−r1, r2} that
separate in U ′′ the points 0, r2 from −r1 and ∂U . The corresponding modulus of Γ is
equal to

m(Γ) =
1

2

K

K′

(√
r1(1− r2)2

(r2 + r1)(1 + r1r2)

)
.

Further similar application of symmetrization leads to the inequality in (ii).
¤

In [12] we obtained the following result. If f is a map from U into U , f(0) = 0,
and the angular limit f(1) = 1 exists as well as the angular non-zero, finite derivative

f ′(1), then |f ′(1)| > 1/
√
|f ′(0)| > 1. For the h-convex functions we have the following

result.

Corollary 4.1. Let f ∈ Hc and the angular limit f(1) = 1 exists as well as the
angular derivative f ′(1). Then

|f ′(1)| > 1 + b

2
√
b|f ′(0)|

>
1 + b

2b
=

(1 + c)2

4c
.

The equality signs appear for the function w = k∗b (z).

This partially means that in the whole class H all functions with f(1) = 1 satisfy
the inequality |f ′(1)| > 1.

Corollary 4.2. [9] Let f ∈ Hc. Then
∣∣∣
zf ′(z)

f(z)

∣∣∣ 6
1 + |z|
1− |z|

(1 + bρ)(ρ+ b)(1− ρ2)
(ρ2 + 2bρ+ 1)(bρ2 + 2ρ+ b)

,

where ρ = |f(z)|. The inequality is sharp for the function k∗b (z).

The inequality in the last corollary has been obtained in ([9], Theorem 4) and led

to the sharp form of the distortion theorem. For |z| 6 k−1b (
√
2 − 1) =: F (c) we have

|f ′(z)| 6 k′b(|z|) with the equality sign for the function k∗b (z).

Theorem 4.3. Let f ∈ Hc. Then for 0 < r1 < r2 < 1 and |z| = 1
∣∣∣
D1(f, r2z)

D1(f, r1z)

∣∣∣ >
(1− r2)(1 + r1)

(1 + r2)(1− r1)
.

Proof. We calculate

∂

∂r

|f ′(rz)|
1− |f(rz)|2 =

1

r

|f ′(rz)|
1− |f(rz)|2Re

(
rzf ′′(rz)

f ′(rz)
+ 2

rzf ′(rz)

f(rz)

|f(rz)|2
1− |f(rz)|2

)
>
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> − 2

1 + r

|f ′(rz)|
1− |f(rz)|2 .

The last inequality has appeared due to the characterization for hyperbolically convex
functions (1) given in [5]. Integrating this inequality from r1 up to r2 we obtain the
inequality in the theorem. ¤

By analogy with [7] one can also deduce some simple consequences from the esti-

mations of the expression Re zf ′(z)
f(z) for the functions from Hc, 0 < r1 < r2 < 1,

|f(r2)− f(r1)| >
c

2
(r2 − r1).

If, moreover, r2 < k−1b (
√
2− 1), then

|f(r2)− f(r1)| <
(1 + c)2

4c
(r2 − r1).

References

[1] A. Beardon, The Geometry of Discrete Groups, Springer: New York, (1983).

[2] E. G. Emel’yanov, On extremal partitioning problems, Zap. Nauchn. Sem. Leningrad. Otdel.
Mat. Inst. Steklov. (LOMI), 154, (1986), 76–89; English transl., J. Soviet Math., 43, (1988), no.

4, 2558–2566.
[3] J. Jenkins, On the existence of certain general extremal metrics, Ann. of Math., 66, (1957), no.

3, 440–453.
[4] G. V. Kuz’mina, On extremal properties of quadratic differentials with strip-like domains in

their trajectory structure, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 154,

(1986), 110–129; English transl., J. Soviet Math., 43, (1988), no. 4, 2579–2591.
[5] W. Ma, D. Minda, Hyperbolically convex functions, Ann. Polon. Math., 60, (1994), no. 1, 81–100.
[6] W. Ma, D. Minda, Hyperbolically convex functions II, Ann. Polon. Math., 71, (1999), no. 3,

273–285.
[7] D. Mej́ıa, Ch. Pommerenke, Sobre aplicaciones conformes hiperbólicamente convexas, Revista
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