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On π-images of separable metric spaces

Ying Ge and Jian-Sheng Gu

Abstract. We prove that a space is a sequentially-quotient (pseudo-sequence-

covering), π-image of a separable metric space if and only if it has a point-star
network consisting of countable-cs∗-covers. We also investigate spaces with count-

able sn-networks.

1. Introduction

All spaces are assumed to be Hausdorff, and need not to be regular. π-mappings,
were introduced by V. I. Ponomarev in [14], play an important role in generalized metric
spaces theory ([5], [7], [2]). In recent years, π-mappings with some sequence-covering
properties cause attention once again ([16], [6], [9]). We known that sequentially-
quotient, compact images of (separable) metric spaces and pseudo-sequence-covering,
compact images of (separable) metric spaces are equivalent ([17], [11]). However, if
the analogous results on π-images is true. That is, we have the following question (also
see [9, Question 3.1.14], for example).

Question 1.1. Are sequentially-quotient, π-images of (separable) metric spaces
and pseudo-sequence-covering, π-images of (separable) metric spaces equivalent?

Taking this question into account, we prove that a space with a point-star network
consisting of countable-cs∗-covers is a pseudo-sequence-covering, π-image of a separable
metric space. As an application of this result, we give a positive answer to Question
1.1 for separable metric domains. In addition, we investigate spaces with countable
sn-networks, prove that a sequentially-quotient, π-image of a separable metric space
has countable sn-network, and the inversion is not true. But a space with a countable
closed sn-network is a compact-covering, compact image of a separable metric space.

Throughout this paper, all mappings are continuous and onto. N denotes the set
of all natural numbers. Let X be a space and let A be a subset of X. We call that
a sequence {xn : n ∈ N}

⋃
{x} in X converging to x is eventually in A if {xn : n >
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k}
⋃
{x} ⊂ A for some k ∈ N . Let P be family of subsets of X.

⋃
P denotes the union⋃

{P : P ∈ P}. For x ∈ X, (P)x denotes the subfamily {P ∈ P : x ∈ P} of P and
st(x,P) denotes the union

⋃
{P ∈ P : x ∈ P}. We call P is a network at some point

x ∈ X if whenever x ∈ U with U open in X, then x ∈ P ⊂ U for some P ∈ (P)x.
Let f : X −→ Y be a mapping, and let P be a family of subsets of X. f(P) denotes
{f(P ) : P ∈ P}. We use the convention that every convergent sequence contains its
limit point.

2. π-images of separable metric spaces

Definition 2.1. ([14]). Let (X, d) be a metric space, and let f : X −→ Y be a
mapping. f is called a π-mapping, if for every y ∈ Y and for every neighborhood U of
y in Y , d(f−1(y), X − f−1(U)) > 0.

Remark 2.1. Recall a mapping f : X −→ Y is compact, if f−1(y) is a compact
subset of X for every y ∈ Y . It is clear that every compact mapping from a metric
space is a π-mapping.

Definition 2.2. Let f : X −→ Y be a mapping.
(1) f is called a sequentially-quotient mapping([1]) if for every convergent sequence

S of Y , there exists a convergent sequence L of X such that f(L) is a subsequence of
S.

(2) f is called a pseudo-sequence-covering mapping([6]) if for every convergent
sequence S of Y , there exists a compact subset K of X such that f(K) = S.

(3) f is called a subsequence-covering mapping([10]) if for every convergent se-
quence S of Y , there exists a compact subset K of X such that f(K) is a subsequence
of S.

(4) f is called a compact-covering mapping([13]) if for every compact subset C of
Y , there exists a compact subset K of X such that f(K) = C.

Remark 2.2. (1) Sequentially-quotient mapping (pseudo-sequence-covering map-
ping) =⇒ subsequence-covering mapping.

(2) Compact-covering mapping =⇒ pseudo-sequence-covering mapping =⇒(if the
domain is metric) sequentially-quotient mapping.

Definition 2.3. ([12]). Let {Pn : n ∈ N} be a sequence of covers of a space X.
{Pn : n ∈ N} is called a point-star network of X, if {st(x,Pn) : n ∈ N} is a network
at x for every x ∈ X.

Definition 2.4. ([9]). Let P be a cover of a space X. P is called a cs∗-cover if
for every convergent sequence S, there exist P ∈ P and a subsequence S ′ of S such
that S′ is eventually in P . P is called an fcs-cover if for every convergent sequence S
converging to x, there exists a finite subfamily F of (P)x such that S is eventually in⋃
F . Furthermore P is called a countable-cs∗-cover (resp. countable-fcs-cover) if P is

also countable.

It is easy to see that every fcs-cover of a space is a cs∗-cover and the inversion is not
true. But every point-countable-cs∗-cover of a space is an fcs-cover by the following
lemma.
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Lemma 2.1. Let P be a point-countable cover of a space X. Then P is a cs∗-cover
if and only if it is an fcs-cover.

Proof. The sufficiency is clear. We prove necessity. Let P be a point-countable-
cs∗-cover of a space X. Let S = {xn : n ∈ N}

⋃
{x} be a sequence converging to x ∈ X.

Put (P)x = {Pn : n ∈ N}. We only need to prove that S is eventually in
⋃
n6k Pn for

some k ∈ N . If for any k ∈ N , S is not eventually in
⋃
n6k Pn, then for every k ∈ N ,

there exists xnk
∈ S−

⋃
n6k Pn. We may assume n1 < n2 < · · · < nk−1 < nk < nk+1 <

· · · . Put S′ = {xnk
: k ∈ N}

⋃
{x}, then S′ is a sequence converging to x. Since P is a

cs∗-cover, there exist m ∈ N and a subsequence S ′′ of S′ such that S′′ is eventually in
Pm. Note that Pm ∈ (P)x. This contradicts the construction of S

′. ¤

Lin proved that every pseudo-sequence-covering mapping is sequentially-quotient
if the domain is a space in which every point is Gδ([9]). We point out pseudo-sequence-
covering mapping can be relaxed to subsequence-covering mapping. That is, we have
the following lemma.

Lemma 2.2. Let f : X −→ Y be a subsequence-covering mapping, and let every
point in X be Gδ. Then f is a sequentially-quotient mapping.

Proof. Let S be a sequence in Y converging to y ∈ Y . Since f is subsequence-
covering, there exists a compact subset K of X such that f(K) = S ′ is a subsequence
of S. Put S′ = {yn : n ∈ N}

⋃
{y}. Pick xn ∈ f−1(yn)

⋂
K for every n ∈ N , and put

L = {xn : n ∈ N}, then L ⊂ K. Notice that K is a compact subspace in which every
point is Gδ. K is the first countable, so K is sequentially compact, thus there exists
a subsequence {xnk

: k ∈ N} of L, which converges to some x ∈ f−1(y). This proves
that f is sequentially-quotient. ¤

Now we give the main theorem in this paper.

Theorem 2.1. Let X be a space. Then the following are equivalent.
(1) X is a pseudo-sequence-covering, π-image of a separable metric space.
(2) X is a subsequence-covering, π-image of a separable metric space.
(3) X is a sequentially-quotient, π-image of a separable metric space.
(4) X has a point-star network consisting of countable-cs∗-covers.
(5) X has a point-star network consisting of countable-fcs-covers.

Proof. (1)=⇒(2) from Remark 2.2. (2)=⇒(3) from Lemma 2.2. (4)=⇒(5) from
Lemma 2.1. We only need to prove that (3)=⇒(4) and (5)=⇒(1).

(3)=⇒(4): Let (M,d) be a separable metric space, and let f : M −→ X be a
sequentially-quotient, π-mapping. We write B(a, ε) = {b ∈ M : d(a, b) < ε} for every
a ∈ M , here ε > 0. Since M is separable, there exists a countable dense subset M ′ of
M . For every n ∈ N , put Bn = {B(a, 1/n) : a ∈M ′}, and put Pn = f(Bn), then Pn is
a countable cover of X.

Claim 1. {st(x,Pn) : n ∈ N} is a network at x for every x ∈ X.
Proof. Let x ∈ U with U open in X. Since f is a π-mapping, there exists n ∈ N

such that d(f−1(x),M − f−1(U)) > 1/n. Pick m ∈ N such that m > 2n. We prove
that st(x,Pm) ⊂ U as follows. In fact, let x ∈ f(B(a, 1/m)) ∈ Pm, here a ∈ M ′.
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Then f−1(x)
⋂

B(a, 1/m) 6= ∅. If B(a, 1/m) 6⊂ f−1(U), then d(f−1(x),M−f−1(U)) <
2/m < 1/n. This is a contradiction. Thus B(a, 1/m) ⊂ f−1(U), hence f(B(a, 1/m)) ⊂
ff−1(U) = U . So st(x,Pm) ⊂ U . This proves that {st(x,Pn) : n ∈ N} is a network at
x.

Claim 2. Pn is a cs∗-cover for every n ∈ N .
Proof. Let S be a sequence in X converging to x ∈ X. Since f is sequentially-

quotient, there exists a sequence L in M converging to a ∈ M such that f(L) = S ′ is
a subsequence of S. Then there exists b ∈ M ′ such that a ∈ B(b, 1/n) ∈ Bn. Thus L
is eventually in B(b, 1/n), so S ′ = f(L) is eventually in P = f(B(b, 1/n)) ∈ Pn. This
proves that Pn is a cs∗-cover for every n ∈ N .

By the above, X has a point-star network {Pn : n ∈ N} consisting of countable-
cs∗-covers.

(5)=⇒(1): Let X has a point-star network {Pn : n ∈ N} consisting of countable-
fcs-covers.

Put Pn = {Pα : α ∈ Λn} for every n ∈ N , the topology on Λn is the discrete
topology. Put M = {a = (αn) ∈ Πn∈NΛn : {Pαn

} is a network at some xa ∈ X}.
Note that Λn is countable for every n ∈ N . ThenM , which is a subspace of the product
space Πn∈NΛn, is a separable metric space with metric d defined as follows:

Let a = (αn), b = (βn) ∈ M . If a = b, then d(a, b) = 0. If a 6= b, then d(a, b) =
1/min{n ∈ N : αn 6= βn}.

Define f : M −→ X by f(a) = xa for every a = (αn) ∈ M , where {Pαn
} is a

network at xa. It is not difficult to prove that f is a mapping.
Claim 1. f is a π-mapping.
Proof. Let x ∈ U with U open in X. Since Pn is a point-star network of X, there

exists n ∈ N such that st(x,Pn) ⊂ U . Then d(f−1(x),M − f−1(U)) > 1/2n > 0. In
fact, let a = (αn) ∈M such that d(f−1(x), a) < 1/2n. Then there is b = (βn) ∈ f−1(x)
such that d(a, b) < 1/n, so αk = βk if k 6 n. Notice that x ∈ Pβn

∈ Pn, Pαn
= Pβn

,
so f(a) ∈ Pαn

= Pβn
⊂ st(x,Pn) ⊂ U , hence a ∈ f−1(U). Thus d(f−1(x), a) > 1/2n

if a ∈ M − f−1(U), so d(f−1(x),M − f−1(U)) > 1/2n > 0. This proves that f is a
π-mapping.

Claim 2. f is a pseudo-sequence-covering mapping.
Proof. Let L = {xn : n ∈ N}

⋃
{x} be a sequence in X converging to x ∈ X. For

every n ∈ N , since Pn is an fcs-cover, there exists a finite subfamily Fn of (Pn)x such
that L is eventually in

⋃
Fn. Note that L−

⋃
Fn is finite. There exists a finite subfamily

Gn of Pn such that L −
⋃
Fn ⊂

⋃
Gn. Put Fn

⋃
Gn = {Pαn

: αn ∈ Γn}, here Γn is a
finite subset of Λn. For every αn ∈ Γn, if Pαn

∈ Fn, put Lαn
= L

⋂
Pαn

, otherwise, put
Lαn

= (L−
⋃
Fn)

⋂
Pαn

. It is easy to see that L =
⋃
αn∈Γn

Lαn
and {Lαn

: αn ∈ Γn}
is a family of compact subsets of X. Put K = {(αn) ∈ Πn∈NΓn :

⋂
n∈N Lαn

6= ∅}.
Then

(i) K ⊂ M and f(K) ⊂ L: Let a = (αn) ∈ K, then
⋂
n∈N Lαn

6= ∅. Pick
y ∈

⋂
n∈N Lαn

, then y ∈
⋂
n∈N Pαn

. Note that {Pαn
: n ∈ N} is a network at y if

and only if y ∈
⋂
n∈N Lαn

. So a ∈ M and f(a) = y ∈ L. This proves K ⊂ M and
f(K) ⊂ L.

(ii) L ⊂ f(K): Let y ∈ L. For every n ∈ N , Pick αn ∈ Γn such that y ∈ Lαn
. Put

a = (αn), then a ∈ K and f(a) = y. This proves That L ⊂ f(K).
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(iii) K is a compact subset of M : Since K ⊂M and Πn∈NΓn is a compact subset
of Πn∈NΛn. We only need to prove that K is a closed subset of Πn∈NΓn. It is clear
that K ⊂ Πn∈NΓn. Let a = (αn) ∈ Πn∈NΓn −K. Then

⋂
n∈N Lαn

= ∅. There exists
n0 ∈ N such that

⋂
n6n0

Lαn
= ∅. Put W = {(βn) ∈ Πn∈NΓn : βn = αn for n 6 n0}.

Then W is open in Πn∈NΓn and a ∈ Πn∈NΓn. It is easy to see W
⋂

K = ∅. So K is a
closed subset of Πn∈NΓn.

By (i), (ii) and (iii), f is a pseudo-sequence-covering mapping and X is a pseudo-
sequence-covering, π-image of a separable metric space. ¤

Remark 2.3. Whether “separable” and “countable-” in Theorem 2.1 can be omit-
ted? It is still open(see [9, Question 3.1.14]).

3. The space with a countable sn-network

Definition 3.1. ([3]). Let X be a space, and let x ∈ X. A subset P of X is called
a sequential neighborhood of x (called a sequence barrier at x in [8]) if every sequence
S = {xn : n ∈ N}

⋃
{x} converging to x is eventually in P .

Definition 3.2. ([11]). Let P = ∪{Px : x ∈ X} be a cover of a space X. P is
called an sn-network of X, if Px satisfies the following (a),(b) and (c) for every x ∈ X,
where Px is called an sn-network at x.

(a) Px is a network at x.
(b) If P1, P2 ∈ Px, then P ⊂ P1 ∩ P2 for some P ∈ Px.
(c) Every element of Px is a sequential neighborhood of x.
Furthermore a space X with an sn-network P = ∪{Px : x ∈ X} is called sn-first

countable if Px is countable for every x ∈ X.

Remark 3.1. In [8], An sn-network is called a universal cs-networks, and sn-first
countable is called universally csf -countable.

Definition 3.3. ([11]). Let P be a cover of a space X.
(1) P is a cs-network of X, if whenever {xn : n ∈ N}

⋃
{x} is a sequence converging

to a point x ∈ U with U open in X, then {xn : n > m}
⋃
{x} ⊂ P ⊂ U for some m ∈ N

and some P ∈ P.
(2) P is a cs∗-network ofX, if whenever {xn : n ∈ N}

⋃
{x} is a sequence converging

to a point x ∈ U with U open in X, then {xnk
: k ∈ N}

⋃
{x} ⊂ P ⊂ U for some

subsequence {xnk
: k ∈ N}

⋃
{x} of {xn : n ∈ N}

⋃
{x} and some P ∈ P.

Authors of [11] proved that a regular space is a sequentially-quotient (or compact-
covering), compact image of a separable metric space if and only if it has a countable
sn-network. In ([4]), Ge proved that “compact” can be relaxed to “π-” here. That is,
we have the following result.

Corollary 3.1. Let X be a regular space. Then the following are equivalent.
(1) X is a compact-covering, compact image of a separable metric space.
(2) X is a sequentially-quotient, π-image of a separable metric space.
(3) X has a countable sn-network.
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The following example shows that the “regularity” in the Corollary 3.1 can not be
omitted. Recall a mapping f : X −→ Y is quotient if whenever f−1(U) is open in X,
then U is open in Y .

Example 3.1. A space with a countable base is not a sequentially-quotient, π-
image of a metric space.

Proof. Let R be the set of all real numbers, and let τ be the Euclidean topology
on R. Put X = R with the topology τ ∗ = {{x}

⋃
(D

⋂
U) : x ∈ U ∈ τ}, where D is

the set of all irrational numbers. That is, X is the pointed irrational extension of R.
Then X is Hausdorff, non-regular, and has a countable base ([15, Example 69]). Lin
showed that X is not a symmetric space ([9, Example 3.13 (5)]), so X is not a quotient,
π-image of a metric space ([16]). Note that every sequentially-quotient mapping onto
a first countable space is quotient([1]). Thus X is not a sequentially-quotient, π-image
of a metric space. ¤

By viewing Corollary 3.1, we have the following results without requiring the reg-
ularity of the spaces involved.

Proposition 3.1. For a space X, the following are hold.
(1) If X is a sequentially-quotient, π-image of a separable metric space, then X

has a countable sn-network.
(2) If X has a countable closed sn-network, then X is a compact-covering, compact

image of a separable metric space.

Proof. The proof of (2) is as the proof of [11, Theorem 4.6 (3)=⇒(2)], we omit
it. We only to prove (1).

Let X be a sequentially-quotient, π-image of a separable metric space. Then X
is sn-first countable from the proof [4, Theorem 2.7 (3)=⇒(1)], and X has a count-
able cs∗-network from the proof [4, Lemma 2.6]. We claim that X has a countable
cs-network. In fact, let P be a countable cs∗-network. Put F = {F =

⋃
P ′ :

P ′ is a finite subfamily of P}, then F is countable. It suffices to prove that F
is a cs-network. Let S = {xn : n ∈ N}

⋃
{x} be a sequence in X converging to x ∈ U

with U open in X. Put P ′ = {P ∈ (P)x : P ⊂ U} = {Pn : n ∈ N}. We only need
to prove that S is eventually in

⋃
n6k Pn ∈ F for some k ∈ N . If for any k ∈ N , S is

not eventually in
⋃
n6k Pn, then for every k ∈ N , there exists xnk

∈ S −
⋃
n6k Pn. We

may assume n1 < n2 < · · · < nk−1 < nk < nk+1 < · · · . Put S′ = {xnk
: k ∈ N}

⋃
{x},

then S′ is a sequence converging to x. Since P is a cs∗-network, there exist m ∈ N
and a subsequence S′′ of S′ such that S′′ is eventually in Pm. Note that Pm ∈ (P)x.
This contradicts the construction of S ′. Thus X is an sn-first countable space with a
countable cs-network F . So X has a countable sn-network from [8, Theorem 3.18]. ¤

However, the following two questions are still open. If the answer of Question 3.1
is positive, then so is Question 3.2.

Question 3.1. Is a sequentially-quotient, π-image of a separable metric space a
sequentially-quotient, compact image of a separable metric space?

Question 3.2. ([9, Question 3.2.12]). Is a quotient, π-image of a separable metric
space a quotient, compact image of a separable metric space?
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