SCIENTIA Series A: Mathematical Sciences, Vol. 10 (2004), 65–71 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 0716-8446 © Universidad Técnica Federico Santa María 2004

On π -images of separable metric spaces

Ying Ge and Jian-Sheng Gu

ABSTRACT. We prove that a space is a sequentially-quotient (pseudo-sequencecovering), π -image of a separable metric space if and only if it has a point-star network consisting of countable- cs^* -covers. We also investigate spaces with countable sn-networks.

1. Introduction

All spaces are assumed to be Hausdorff, and need not to be regular. π -mappings, were introduced by V. I. Ponomarev in [14], play an important role in generalized metric spaces theory ([5], [7], [2]). In recent years, π -mappings with some sequence-covering properties cause attention once again ([16], [6], [9]). We known that sequentially-quotient, compact images of (separable) metric spaces and pseudo-sequence-covering, compact images of (separable) metric spaces are equivalent ([17], [11]). However, if the analogous results on π -images is true. That is, we have the following question (also see [9, Question 3.1.14], for example).

QUESTION 1.1. Are sequentially-quotient, π -images of (separable) metric spaces and pseudo-sequence-covering, π -images of (separable) metric spaces equivalent?

Taking this question into account, we prove that a space with a point-star network consisting of countable- cs^* -covers is a pseudo-sequence-covering, π -image of a separable metric space. As an application of this result, we give a positive answer to Question 1.1 for separable metric domains. In addition, we investigate spaces with countable sn-networks, prove that a sequentially-quotient, π -image of a separable metric space has countable sn-network, and the inversion is not true. But a space with a countable closed sn-network is a compact-covering, compact image of a separable metric space.

Throughout this paper, all mappings are continuous and onto. N denotes the set of all natural numbers. Let X be a space and let A be a subset of X. We call that a sequence $\{x_n : n \in N\} \bigcup \{x\}$ in X converging to x is eventually in A if $\{x_n : n >$

²⁰⁰⁰ Mathematics Subject Classification. 54C05, 54C10, 54D65, 54E40.

Key words and phrases. Separable metric space, π -mapping, sequentially-quotient (resp. pseudo-sequence-covering) mapping, sn-(resp. cs-, cs^{*}-)network, point-star network, cs^{*}-(resp. fcs-)cover.

This project was supported by NSF of the Education Committee of Jiangsu Province in China (No. 02KJB110001).

⁶⁵

 $k \} \bigcup \{x\} \subset A$ for some $k \in N$. Let \mathcal{P} be family of subsets of X. $\bigcup \mathcal{P}$ denotes the union $\bigcup \{P : P \in \mathcal{P}\}$. For $x \in X$, $(\mathcal{P})_x$ denotes the subfamily $\{P \in \mathcal{P} : x \in P\}$ of \mathcal{P} and $st(x,\mathcal{P})$ denotes the union $\bigcup \{P \in \mathcal{P} : x \in P\}$. We call \mathcal{P} is a network at some point $x \in X$ if whenever $x \in U$ with U open in X, then $x \in P \subset U$ for some $P \in (\mathcal{P})_x$. Let $f : X \longrightarrow Y$ be a mapping, and let \mathcal{P} be a family of subsets of X. $f(\mathcal{P})$ denotes $\{f(P) : P \in \mathcal{P}\}$. We use the convention that every convergent sequence contains its limit point.

2. π -images of separable metric spaces

DEFINITION 2.1. ([14]). Let (X, d) be a metric space, and let $f : X \longrightarrow Y$ be a mapping. f is called a π -mapping, if for every $y \in Y$ and for every neighborhood U of y in Y, $d(f^{-1}(y), X - f^{-1}(U)) > 0$.

REMARK 2.1. Recall a mapping $f : X \longrightarrow Y$ is compact, if $f^{-1}(y)$ is a compact subset of X for every $y \in Y$. It is clear that every compact mapping from a metric space is a π -mapping.

DEFINITION 2.2. Let $f: X \longrightarrow Y$ be a mapping.

(1) f is called a sequentially-quotient mapping([1]) if for every convergent sequence S of Y, there exists a convergent sequence L of X such that f(L) is a subsequence of S.

(2) f is called a pseudo-sequence-covering mapping([6]) if for every convergent sequence S of Y, there exists a compact subset K of X such that f(K) = S.

(3) f is called a subsequence-covering mapping([10]) if for every convergent sequence S of Y, there exists a compact subset K of X such that f(K) is a subsequence of S.

(4) f is called a compact-covering mapping([13]) if for every compact subset C of Y, there exists a compact subset K of X such that f(K) = C.

REMARK 2.2. (1) Sequentially-quotient mapping (pseudo-sequence-covering mapping) \implies subsequence-covering mapping.

(2) Compact-covering mapping \implies pseudo-sequence-covering mapping \implies (if the domain is metric) sequentially-quotient mapping.

DEFINITION 2.3. ([12]). Let $\{\mathcal{P}_n : n \in N\}$ be a sequence of covers of a space X. $\{\mathcal{P}_n : n \in N\}$ is called a point-star network of X, if $\{st(x, \mathcal{P}_n) : n \in N\}$ is a network at x for every $x \in X$.

DEFINITION 2.4. ([9]). Let \mathcal{P} be a cover of a space X. \mathcal{P} is called a cs^* -cover if for every convergent sequence S, there exist $P \in \mathcal{P}$ and a subsequence S' of S such that S' is eventually in P. \mathcal{P} is called an fcs-cover if for every convergent sequence Sconverging to x, there exists a finite subfamily \mathcal{F} of $(\mathcal{P})_x$ such that S is eventually in $\bigcup \mathcal{F}$. Furthermore \mathcal{P} is called a countable- cs^* -cover (resp. countable-fcs-cover) if \mathcal{P} is also countable.

It is easy to see that every fcs-cover of a space is a cs^* -cover and the inversion is not true. But every point-countable- cs^* -cover of a space is an fcs-cover by the following lemma.

LEMMA 2.1. Let \mathcal{P} be a point-countable cover of a space X. Then \mathcal{P} is a cs^{*}-cover if and only if it is an fcs-cover.

PROOF. The sufficiency is clear. We prove necessity. Let \mathcal{P} be a point-countable cs^* -cover of a space X. Let $S = \{x_n : n \in N\} \bigcup \{x\}$ be a sequence converging to $x \in X$. Put $(\mathcal{P})_x = \{P_n : n \in N\}$. We only need to prove that S is eventually in $\bigcup_{n \leq k} P_n$ for some $k \in N$. If for any $k \in N$, S is not eventually in $\bigcup_{n \leq k} P_n$, then for every $k \in N$, there exists $x_{n_k} \in S - \bigcup_{n \leq k} P_n$. We may assume $n_1 < n_2 < \cdots < n_{k-1} < n_k < n_{k+1} < \cdots$. Put $S' = \{x_{n_k} : k \in N\} \bigcup \{x\}$, then S' is a sequence converging to x. Since \mathcal{P} is a cs^* -cover, there exist $m \in N$ and a subsequence S'' of S' such that S'' is eventually in P_m . Note that $P_m \in (\mathcal{P})_x$. This contradicts the construction of S'.

Lin proved that every pseudo-sequence-covering mapping is sequentially-quotient if the domain is a space in which every point is $G_{\delta}([\mathbf{9}])$. We point out pseudo-sequence-covering mapping can be relaxed to subsequence-covering mapping. That is, we have the following lemma.

LEMMA 2.2. Let $f : X \longrightarrow Y$ be a subsequence-covering mapping, and let every point in X be G_{δ} . Then f is a sequentially-quotient mapping.

PROOF. Let S be a sequence in Y converging to $y \in Y$. Since f is subsequencecovering, there exists a compact subset K of X such that f(K) = S' is a subsequence of S. Put $S' = \{y_n : n \in N\} \bigcup \{y\}$. Pick $x_n \in f^{-1}(y_n) \bigcap K$ for every $n \in N$, and put $L = \{x_n : n \in N\}$, then $L \subset K$. Notice that K is a compact subspace in which every point is G_{δ} . K is the first countable, so K is sequentially compact, thus there exists a subsequence $\{x_{n_k} : k \in N\}$ of L, which converges to some $x \in f^{-1}(y)$. This proves that f is sequentially-quotient.

Now we give the main theorem in this paper.

THEOREM 2.1. Let X be a space. Then the following are equivalent.

(1) X is a pseudo-sequence-covering, π -image of a separable metric space.

- (2) X is a subsequence-covering, π -image of a separable metric space.
- (3) X is a sequentially-quotient, π -image of a separable metric space.
- (4) X has a point-star network consisting of countable- cs^* -covers.
- (5) X has a point-star network consisting of countable-fcs-covers.

PROOF. (1) \Longrightarrow (2) from Remark 2.2. (2) \Longrightarrow (3) from Lemma 2.2. (4) \Longrightarrow (5) from Lemma 2.1. We only need to prove that (3) \Longrightarrow (4) and (5) \Longrightarrow (1).

(3) \Longrightarrow (4): Let (M, d) be a separable metric space, and let $f : M \longrightarrow X$ be a sequentially-quotient, π -mapping. We write $B(a, \varepsilon) = \{b \in M : d(a, b) < \varepsilon\}$ for every $a \in M$, here $\varepsilon > 0$. Since M is separable, there exists a countable dense subset M' of M. For every $n \in N$, put $\mathcal{B}_n = \{B(a, 1/n) : a \in M'\}$, and put $\mathcal{P}_n = f(\mathcal{B}_n)$, then \mathcal{P}_n is a countable cover of X.

Claim 1. $\{st(x, \mathcal{P}_n) : n \in N\}$ is a network at x for every $x \in X$.

Proof. Let $x \in U$ with U open in X. Since f is a π -mapping, there exists $n \in N$ such that $d(f^{-1}(x), M - f^{-1}(U)) > 1/n$. Pick $m \in N$ such that m > 2n. We prove that $st(x, \mathcal{P}_m) \subset U$ as follows. In fact, let $x \in f(B(a, 1/m)) \in \mathcal{P}_m$, here $a \in M'$.

Then $f^{-1}(x) \cap B(a, 1/m) \neq \emptyset$. If $B(a, 1/m) \not\subset f^{-1}(U)$, then $d(f^{-1}(x), M - f^{-1}(U)) < 2/m < 1/n$. This is a contradiction. Thus $B(a, 1/m) \subset f^{-1}(U)$, hence $f(B(a, 1/m)) \subset ff^{-1}(U) = U$. So $st(x, \mathcal{P}_m) \subset U$. This proves that $\{st(x, \mathcal{P}_n) : n \in N\}$ is a network at x.

Claim 2. \mathcal{P}_n is a cs^* -cover for every $n \in N$.

Proof. Let S be a sequence in X converging to $x \in X$. Since f is sequentiallyquotient, there exists a sequence L in M converging to $a \in M$ such that f(L) = S' is a subsequence of S. Then there exists $b \in M'$ such that $a \in B(b, 1/n) \in \mathcal{B}_n$. Thus L is eventually in B(b, 1/n), so S' = f(L) is eventually in $P = f(B(b, 1/n)) \in \mathcal{P}_n$. This proves that \mathcal{P}_n is a cs^* -cover for every $n \in N$.

By the above, X has a point-star network $\{\mathcal{P}_n : n \in N\}$ consisting of countablecs^{*}-covers.

(5) \Longrightarrow (1): Let X has a point-star network $\{\mathcal{P}_n : n \in N\}$ consisting of countablefcs-covers.

Put $\mathcal{P}_n = \{P_\alpha : \alpha \in \Lambda_n\}$ for every $n \in N$, the topology on Λ_n is the discrete topology. Put $M = \{a = (\alpha_n) \in \prod_{n \in N} \Lambda_n : \{P_{\alpha_n}\} \text{ is a network at some } x_a \in X\}$. Note that Λ_n is countable for every $n \in N$. Then M, which is a subspace of the product space $\prod_{n \in N} \Lambda_n$, is a separable metric space with metric d defined as follows:

Let $a = (\alpha_n), b = (\beta_n) \in M$. If a = b, then d(a, b) = 0. If $a \neq b$, then $d(a, b) = 1/\min\{n \in N : \alpha_n \neq \beta_n\}$.

Define $f : M \longrightarrow X$ by $f(a) = x_a$ for every $a = (\alpha_n) \in M$, where $\{P_{\alpha_n}\}$ is a network at x_a . It is not difficult to prove that f is a mapping.

Claim 1. f is a π -mapping.

Proof. Let $x \in U$ with U open in X. Since \mathcal{P}_n is a point-star network of X, there exists $n \in N$ such that $st(x, \mathcal{P}_n) \subset U$. Then $d(f^{-1}(x), M - f^{-1}(U)) \ge 1/2n > 0$. In fact, let $a = (\alpha_n) \in M$ such that $d(f^{-1}(x), a) < 1/2n$. Then there is $b = (\beta_n) \in f^{-1}(x)$ such that d(a, b) < 1/n, so $\alpha_k = \beta_k$ if $k \le n$. Notice that $x \in \mathcal{P}_{\beta_n} \in \mathcal{P}_n$, $\mathcal{P}_{\alpha_n} = \mathcal{P}_{\beta_n}$, so $f(a) \in \mathcal{P}_{\alpha_n} = \mathcal{P}_{\beta_n} \subset st(x, \mathcal{P}_n) \subset U$, hence $a \in f^{-1}(U)$. Thus $d(f^{-1}(x), a) \ge 1/2n$ if $a \in M - f^{-1}(U)$, so $d(f^{-1}(x), M - f^{-1}(U)) \ge 1/2n > 0$. This proves that f is a π -mapping.

Claim 2. f is a pseudo-sequence-covering mapping.

Proof. Let $L = \{x_n : n \in N\} \bigcup \{x\}$ be a sequence in X converging to $x \in X$. For every $n \in N$, since \mathcal{P}_n is an *fcs*-cover, there exists a finite subfamily \mathcal{F}_n of $(\mathcal{P}_n)_x$ such that L is eventually in $\bigcup \mathcal{F}_n$. Note that $L - \bigcup \mathcal{F}_n$ is finite. There exists a finite subfamily \mathcal{G}_n of \mathcal{P}_n such that $L - \bigcup \mathcal{F}_n \subset \bigcup \mathcal{G}_n$. Put $\mathcal{F}_n \bigcup \mathcal{G}_n = \{P_{\alpha_n} : \alpha_n \in \Gamma_n\}$, here Γ_n is a finite subset of Λ_n . For every $\alpha_n \in \Gamma_n$, if $P_{\alpha_n} \in \mathcal{F}_n$, put $L_{\alpha_n} = L \bigcap \mathcal{P}_{\alpha_n}$, otherwise, put $L_{\alpha_n} = (L - \bigcup \mathcal{F}_n) \bigcap \mathcal{P}_{\alpha_n}$. It is easy to see that $L = \bigcup_{\alpha_n \in \Gamma_n} L_{\alpha_n}$ and $\{L_{\alpha_n} : \alpha_n \in \Gamma_n\}$ is a family of compact subsets of X. Put $K = \{(\alpha_n) \in \prod_{n \in N} \Gamma_n : \bigcap_{n \in N} L_{\alpha_n} \neq \emptyset\}$. Then

(i) $K \subset M$ and $f(K) \subset L$: Let $a = (\alpha_n) \in K$, then $\bigcap_{n \in N} L_{\alpha_n} \neq \emptyset$. Pick $y \in \bigcap_{n \in N} L_{\alpha_n}$, then $y \in \bigcap_{n \in N} P_{\alpha_n}$. Note that $\{P_{\alpha_n} : n \in N\}$ is a network at y if and only if $y \in \bigcap_{n \in N} L_{\alpha_n}$. So $a \in M$ and $f(a) = y \in L$. This proves $K \subset M$ and $f(K) \subset L$.

(ii) $L \subset f(K)$: Let $y \in L$. For every $n \in N$, Pick $\alpha_n \in \Gamma_n$ such that $y \in L_{\alpha_n}$. Put $a = (\alpha_n)$, then $a \in K$ and f(a) = y. This proves That $L \subset f(K)$.

(iii) K is a compact subset of M: Since $K \subset M$ and $\prod_{n \in N} \Gamma_n$ is a compact subset of $\prod_{n \in N} \Lambda_n$. We only need to prove that K is a closed subset of $\prod_{n \in N} \Gamma_n$. It is clear that $K \subset \prod_{n \in N} \Gamma_n$. Let $a = (\alpha_n) \in \prod_{n \in N} \Gamma_n - K$. Then $\bigcap_{n \in N} L_{\alpha_n} = \emptyset$. There exists $n_0 \in N$ such that $\bigcap_{n \leqslant n_0} L_{\alpha_n} = \emptyset$. Put $W = \{(\beta_n) \in \prod_{n \in N} \Gamma_n : \beta_n = \alpha_n \text{ for } n \leqslant n_0\}$. Then W is open in $\prod_{n \in N} \Gamma_n$ and $a \in \prod_{n \in N} \Gamma_n$. It is easy to see $W \bigcap K = \emptyset$. So K is a closed subset of $\prod_{n \in N} \Gamma_n$.

By (i), (ii) and (iii), f is a pseudo-sequence-covering mapping and X is a pseudo-sequence-covering, π -image of a separable metric space.

REMARK 2.3. Whether "separable" and "countable-" in Theorem 2.1 can be omitted? It is still open(see [9, Question 3.1.14]).

3. The space with a countable *sn*-network

DEFINITION 3.1. ([3]). Let X be a space, and let $x \in X$. A subset P of X is called a sequential neighborhood of x (called a sequence barrier at x in [8]) if every sequence $S = \{x_n : n \in N\} \bigcup \{x\}$ converging to x is eventually in P.

DEFINITION 3.2. ([11]). Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a cover of a space X. \mathcal{P} is called an *sn*-network of X, if \mathcal{P}_x satisfies the following (a),(b) and (c) for every $x \in X$, where \mathcal{P}_x is called an *sn*-network at x.

(a) \mathcal{P}_x is a network at x.

(b) If $P_1, P_2 \in \mathcal{P}_x$, then $P \subset P_1 \cap P_2$ for some $P \in \mathcal{P}_x$.

(c) Every element of \mathcal{P}_x is a sequential neighborhood of x.

Furthermore a space X with an sn-network $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ is called sn-first countable if \mathcal{P}_x is countable for every $x \in X$.

REMARK 3.1. In [8], An *sn*-network is called a universal *cs*-networks, and *sn*-first countable is called universally csf-countable.

DEFINITION 3.3. ([11]). Let \mathcal{P} be a cover of a space X.

(1) \mathcal{P} is a *cs*-network of X, if whenever $\{x_n : n \in N\} \bigcup \{x\}$ is a sequence converging to a point $x \in U$ with U open in X, then $\{x_n : n \ge m\} \bigcup \{x\} \subset P \subset U$ for some $m \in N$ and some $P \in \mathcal{P}$.

(2) \mathcal{P} is a cs^* -network of X, if whenever $\{x_n : n \in N\} \bigcup \{x\}$ is a sequence converging to a point $x \in U$ with U open in X, then $\{x_{n_k} : k \in N\} \bigcup \{x\} \subset P \subset U$ for some subsequence $\{x_{n_k} : k \in N\} \bigcup \{x\}$ of $\{x_n : n \in N\} \bigcup \{x\}$ and some $P \in \mathcal{P}$.

Authors of [11] proved that a regular space is a sequentially-quotient (or compactcovering), compact image of a separable metric space if and only if it has a countable *sn*-network. In ([4]), Ge proved that "compact" can be relaxed to " π -" here. That is, we have the following result.

COROLLARY 3.1. Let X be a regular space. Then the following are equivalent.

(1) X is a compact-covering, compact image of a separable metric space.

(2) X is a sequentially-quotient, π -image of a separable metric space.

(3) X has a countable sn-network.

The following example shows that the "regularity" in the Corollary 3.1 can not be omitted. Recall a mapping $f: X \longrightarrow Y$ is quotient if whenever $f^{-1}(U)$ is open in X, then U is open in Y.

EXAMPLE 3.1. A space with a countable base is not a sequentially-quotient, π -image of a metric space.

PROOF. Let R be the set of all real numbers, and let τ be the Euclidean topology on R. Put X = R with the topology $\tau^* = \{\{x\} \bigcup (D \cap U) : x \in U \in \tau\}$, where D is the set of all irrational numbers. That is, X is the pointed irrational extension of R. Then X is Hausdorff, non-regular, and has a countable base ([15, Example 69]). Lin showed that X is not a symmetric space ([9, Example 3.13 (5)]), so X is not a quotient, π -image of a metric space ([16]). Note that every sequentially-quotient mapping onto a first countable space is quotient([1]). Thus X is not a sequentially-quotient, π -image of a metric space.

By viewing Corollary 3.1, we have the following results without requiring the regularity of the spaces involved.

PROPOSITION 3.1. For a space X, the following are hold.

(1) If X is a sequentially-quotient, π -image of a separable metric space, then X has a countable sn-network.

(2) If X has a countable closed sn-network, then X is a compact-covering, compact image of a separable metric space.

PROOF. The proof of (2) is as the proof of [11, Theorem 4.6 (3) \Longrightarrow (2)], we omit it. We only to prove (1).

Let X be a sequentially-quotient, π -image of a separable metric space. Then X is sn-first countable from the proof [4, Theorem 2.7 (3) \Longrightarrow (1)], and X has a countable cs^* -network from the proof [4, Lemma 2.6]. We claim that X has a countable cs-network. In fact, let \mathcal{P} be a countable cs^* -network. Put $\mathcal{F} = \{F = \bigcup \mathcal{P}' :$ \mathcal{P}' is a finite subfamily of $\mathcal{P}\}$, then \mathcal{F} is countable. It suffices to prove that \mathcal{F} is a cs-network. Let $S = \{x_n : n \in N\} \bigcup \{x\}$ be a sequence in X converging to $x \in U$ with U open in X. Put $\mathcal{P}' = \{P \in (\mathcal{P})_x : P \subset U\} = \{P_n : n \in N\}$. We only need to prove that S is eventually in $\bigcup_{n \leq k} P_n \in \mathcal{F}$ for some $k \in N$. If for any $k \in N$, S is not eventually in $\bigcup_{n \leq k} P_n$, then for every $k \in N$, there exists $x_{nk} \in S - \bigcup_{n \leq k} P_n$. We may assume $n_1 < n_2 < \cdots < n_{k-1} < n_k < n_{k+1} < \cdots$. Put $S' = \{x_{n_k} : k \in N\} \bigcup \{x\}$, then S' is a sequence converging to x. Since \mathcal{P} is a cs^* -network, there exist $m \in N$ and a subsequence S'' of S' such that S'' is eventually in \mathcal{P}_m . Note that $\mathcal{P}_m \in (\mathcal{P})_x$. This contradicts the construction of S'. Thus X is an sn-first countable space with a countable cs-network \mathcal{F} . So X has a countable sn-network from [8, Theorem 3.18]. \Box

However, the following two questions are still open. If the answer of Question 3.1 is positive, then so is Question 3.2.

QUESTION 3.1. Is a sequentially-quotient, π -image of a separable metric space a sequentially-quotient, compact image of a separable metric space?

QUESTION 3.2. ([9, Question 3.2.12]). Is a quotient, π -image of a separable metric space a quotient, compact image of a separable metric space?

References

- [1] J. R. Boone and F. Siwiec, Sequentially quotient mappings, Czech. Math. J. 26 (1976), 174–182.
- [2] D. K. Burke, Cauchy sequences in semimetric spaces, Proc. AMS. 33 (1972), 161–164.
- [3] S. P. Franklin, Spaces in which sequence suffice, Fund. Math. 57 (1965), 107-115.
- [4] Y. Ge, Spaces with countable sn-networks, Comment Math. Univ. Carolinae 45 (2004), 169–176.
- [5] R. W. Heath, On open mappings and certain spaces satisfying the first countability axiom, Fund. Math. 57 (1965), 91–96.
- [6] Y. Ikeda, C. Liu and Y. Tanaka, Quotient compact images of metric spaces, and related matters, Topology Appl. 122 (2002), 237–252.
- J. A. Kofner, On a new class of spaces and some problems of symmetrizable theory, Soviet Math. Dokl. 10 (1969), 845–848.
- [8] S. Lin, A note on the Arens' spaces and sequential fan, Topology Appl. 81 (1997), 185–196.
- [9] S. Lin, Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press, Beijing, 2002. (in Chinese)
- [10] S. Lin., C. Liu and M. Dai, *Images on Locally Separable Metric Spaces*, Acta Math. Sinica, New Series 13 (1997), 1–8.
- [11] S. Lin and P. Yan, Sequence-Covering Maps of Metric Spaces, Topology Appl. 109 (2001), 301– 314.
- [12] S. Lin and P. Yan, Notes on cfp-covers, Comment Math. Univ., Carolinae 44 (2003), 295–306.
- [13] E. Michael, \aleph_0 -spaces, J. Math. Mech. 15 (1966), 983–1002.
- [14] V. I. Ponomarev, Axiom of countability and continuous mappings, Bull Pol. Acad Math. 8 (1960), 127–133.
- [15] L. A. Steen and J. A. Seebach Jr, Counterexamples in topology, New York: Springer-Verlag, 1978.
- [16] Y. Tanaka, Symmetric spaces, g-developable spaces and g-metrizable spaces, Math. Japon. 36 (1991), 71–84.
- [17] P. Yan, On the compact images of metric spaces, J. Math. Study 30 (1997), 185-187. (in Chinese)

Received 23 09 2004

GE:
DEPARTMENT OF MATHEMATICS
SUZHOU UNIVERSITY
SUZHOU, JIANGSU, 215006,
P. R. CHINA
E-mail address: geying@pub.sz.jsinfo.net

Gu:

DEPARTMENT OF MATHEMATICS SUZHOU SCIENCE AND TECHNOLOGY COLLEGE SUZHOU, JIANGSU, 215009, P. R. CHINA

E-mail address: jsgu747@vip.sina.com