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Sums of arctangents and some formulas of Ramanujan

George Boros and Victor H. Moll

Abstract. We present diverse methods to evaluate arctangent and related sums.

1. Introduction

The evaluation of arctangent sums of the form
∞∑

k=1

tan−1h(k)(1.1)

for a rational function h reappear in the literature from time to time. For instance
the evaluation of

∞∑

k=1

tan−1 2
k2

=
3π

4
(1.2)

was proposed by Anglesio [1] in 1993. This is a classical problem that appears in
[7, 9, 13], among other places. Similarly the evaluation of

∞∑

k=1

tan−1 1
k2

= tan−1 tan(π/
√

2)− tanh(π/
√

2)
tan(π/

√
2) + tanh(π/

√
2)

(1.3)

was proposed by Chapman [6] in 1990. This was solved by Sarkar [15] using the
techniques described in Section 3.

The goal of this paper is to discuss the evaluation of these sums. Throughout
tan−1 x will always denote the principal value.

We make use of the addition formulas for tan−1 x:

tan−1 x + tan−1 y =

{
tan−1 x+y

1−xy if xy < 1,

tan−1 x+y
1−xy + π sign x if xy > 1,

(1.4)
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and

tan−1 x + tan−1 1
x

=
π

2
sign x.(1.5)

2. The method of telescoping

The closed-form evaluation of a finite sum

S(n) :=
n∑

k=1

ak

is elementary if one can find a sequence {bk} such that

ak = bk − bk−1.

Then the sum S(n) telescopes, i.e.,

S(n) :=
n∑

k=1

ak =
n∑

k=1

bk − bk−1 = bn − b0.

This method can be extended to situations in which the telescoping nature of ak is
hidden by a function.

Theorem 2.1. Let f be of fixed sign and define h by

h(x) =
f(x + 1)− f(x)
1 + f(x + 1)f(x)

.(2.1)

Then
n∑

k=1

tan−1h(k) = tan−1f(n + 1)− tan−1f(1).(2.2)

In particular, if f has a limit at ∞ (including the possibility of f(∞) = ∞), then
∞∑

k=1

tan−1h(k) = tan−1f(∞)− tan−1f(1).(2.3)

Proof. Since

tan−1h(k) = tan−1f(k + 1)− tan−1f(k),

(2.2) follows by telescoping. ¤

Note. The hypothesis on the sign of f is included in order to avoid the case xy > 1
in (1.4). In general, (2.2) has to be replaced by

n∑

k=1

tan−1h(k) = tan−1f(n)− tan−1f(1) + π
∑

sign f(k),(2.4)

where the sum is taken over all k between 1 and n for which f(k)f(k + 1) < −1.
Thus (2.2) is always correct up to an integral multiple of π. The restrictions on the
parameters in the examples described below have the intent of keeping f(k), k ∈ N of
fixed sign.
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Example 2.1. Let f(x) = ax + b, where a, b are such that f(x) > 0 for x > 1.
Then

h(x) =
a

a2x2 + a(a + 2b)x + (1 + ab + b2)
,(2.5)

and (2.3) yields
∞∑

k=1

tan−1 a

a2k2 + a(a + 2b)k + (1 + ab + b2)
=

π

2
− tan−1(a + b).(2.6)

The special case a = 1, b = 0 gives f(x) = x and h(x) = 1/(x2 + x + 1), resulting in
the sum

∞∑

k=1

tan−1 1
k2 + k + 1

=
π

4
.(2.7)

For a = 2, b = 0, we get f(x) = 2x and h(x) = 2/(2x + 1)2, so that
∞∑

k=0

tan−1 2
(2k + 1)2

=
π

2
.(2.8)

Differentiating (2.6) with respect to a yields
∞∑

k=1

pa,b(k)
qa,b(k)

=
1

1 + (a + b)2
,(2.9)

where

pa,b(k) = a2k2 + a2k − (1 + b2)

and

qa,b(k) = a4k4 + 2a3(a + 2b)k3 + a2(2 + a2 + 6ab + 6b2)k2 +

2a(a + 2b)(1 + ab + b2)k + (1 + b2)(1 + a2 + 2ab + b2).

The particular cases a = 1, b = 0 and a = 1/2, b = 1/3 give
∞∑

k=1

k2 + k − 1
k4 + 2k3 + 3k2 + 2k + 2

=
1
2

and
∞∑

k=1

9k2 + 9k − 40
81k4 + 378k3 + 1269k2 + 1932k + 2440

=
1
61

,

respectively.

Example 2.2. This example considers the quadratic function f(x) = ax2 + bx+ c
under the assumption that f(k), k ∈ N has fixed sign. This happens when b2−4ac 6 0.
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Define

a0 := 1 + ac + bc + c2,

a1 := ab + b2 + 2ac + 2bc,

a2 := a2 + 3ab + b2 + 2ac,

a3 := 2a(a + b),
a4 := a2.

Then,

h(x) =
2ax + a + b

a4x4 + a3x3 + a2x2 + a1x + a0
(2.10)

and thus,
∞∑

k=1

tan−1 2ak + a + b

a4k4 + a3k3 + a2k2 + a1k + a0
=

π

2
− tan−1(a + b + c).

The special cases b = −a, c = a/2 and b = −a, c = 0 yield
∞∑

k=1

tan−1 8ak

4a2k4 + (a2 + 4)
=

π

2
− tan−1 a

2

and
∞∑

k=1

tan−1 2ak

a2k4 − a2k2 + 1
=

π

2
,(2.11)

respectively. Note that the last sum is independent of a.

Additional examples can be given by telescoping twice (or even more). For exam-
ple, if f and h be related by

h(x) =
f(x + 1)− f(x− 1)
1 + f(x + 1)f(x− 1)

,(2.12)

then
n∑

k=1

tan−1h(k) = tan−1f(n + 1)− tan−1f(1) + tan−1f(n)− tan−1f(0).

In particular,
∞∑

k=1

tan−1h(k) = 2 tan−1f(∞)− tan−1f(1)− tan−1f(0).(2.13)

Indeed, the relation (2.12) shows that

tan−1h(k) = tan−1f(k + 1)− tan−1f(k − 1),

so
n∑

k=1

tan−1h(k) =
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=
n∑

k=1

[
tan−1f(k + 1)− tan−1f(k − 1)

]

=
n∑

k=1

[
tan−1f(k + 1)− tan−1f(k)

]
+

n∑

k=1

[
tan−1f(k)− tan−1f(k − 1)

]

= tan−1f(n + 1)− tan−1f(1) + tan−1f(n)− tan−1f(0).

Example 2.3. The evaluation
∞∑

k=1

tan−1 2
k2

=
3π

4
(2.14)

corresponds to f(k) = k so that h(k) = 2/k2. This is the problem proposed by
Anglesio [1].

Example 2.4. Take f(k) = −2/k2 so that h(k) = 8k/(k4 − 2k2 + 5). It follows
that

∞∑

k=1

tan−1 8k

k4 − 2k2 + 5
= π − tan−1 1

2
.

This sum is part b) of the problem proposed in [1].

Example 2.5. Take f(k) = −a/(k2 + 1). Then h(k) = 4ak/(k4 + a2 + 4), so that
∞∑

k=1

tan−1 4ak

k4 + a2 + 4
= tan−1 a

2
+ tan−1a.(2.15)

The case a = 1 yields
∞∑

k=1

tan−1 4k

k4 + 5
=

π

4
+ tan−1 1

2
.(2.16)

Differentiating (2.15) with respect to a gives
∞∑

k=1

4k(k4 + 4− a2)
k8 + 2(a2 + 4)k4 + 16a2k2 + (a4 + 8a2 + 16)

=
3(a2 + 2)

(a2 + 1)(a2 + 4)
.

The special case a = 0 yields
∞∑

k=1

k

k4 + 4
=

3
8
.(2.17)

An interesting problem is to find a closed form for f given the function h in (2.1)
or (2.12). Unfortunately this is not possible in general. Moreover, these equations
might have more than one solution: both f(x) = 2x + 1 and f(x) = −x/(x + 1) yield
h(x) = −1/2x2 in (2.1). The method of undetermined coefficients can sometimes
be used to find the function f . For instance, in Example 2.3 we need to solve the
functional equation

2 [1 + f(x− 1)f(x + 1)] = x2 [f(x + 1)− f(x− 1)] .(2.18)
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A polynomial solution of (2.18) must have degree at most 2 and trying f(x) = ax2 +
bx + c yields the solution f(x) = x.

3. The method of zeros

A different technique for the evaluation of arctangent sums is based on the fac-
torization of the product

pn :=
n∏

k=1

(ak + ibk)(3.1)

with ak, bk ∈ R. The argument of pn is given by

Arg(pn) =
n∑

k=1

tan−1 bk

ak
.

Example 3.1. Let

pn(z) =
n∏

k=1

(z − zk)(3.2)

be a polynomial with real coefficients. Then

Arg(pn(z)) =
n∑

k=1

tan−1 x− xk

y − yk
.(3.3)

The special case pn(z) = zn − 1 has roots at zk = cos(2πk/n) + i sin(2πk/n), so we
obtain

Arg(zn − 1) =
n∑

k=1

tan−1 x− cos(2πk/n)
y − sin(2πk/n)

(3.4)

up to an integral multiple of π.

Example 3.2. The classical factorization

sin πz = πz

∞∏

k=1

(
1− z2

k2

)
(3.5)

yields the evaluation
∞∑

k=1

tan−1 2xy

k2 − x2 + y2
= tan−1 y

x
− tan−1 tanh πy

tan πx
.(3.6)

In particular, x = y yields
∞∑

k=1

tan−1 2x2

k2
=

π

4
− tan−1 tanh πx

tan πx
,(3.7)

x = y = 1/
√

2 gives
∞∑

k=1

tan−1 1
k2

=
π

4
− tan−1 tanh (π/

√
2)

tan(π/
√

2)
(3.8)
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(which corresponds to (1.3)), and x = y = 1/2 yields
∞∑

k=1

tan−1 1
2k2

=
π

4
.(3.9)

Differentiating (3.7) gives
∞∑

k=1

k2

k4 + 4x4
=

π

4x

sin 2πx− sinh 2πx

cos 2πx− cosh 2πx
.(3.10)

In particular, x = 1 yields
∞∑

k=1

k2

k4 + 4
=

π

4
coth π.(3.11)

The identity (3.10) is comparable to Ramanujan’s evaluation
∞∑

k=1

k2

k4 + x2k2 + x4
=

π

2x
√

3
sinh πx

√
3−√3 sin πx

cosh πx
√

3− cosπx
(3.12)

discussed in [3], Entry 4 of Chapter 14.

Glasser and Klamkin [10] present other examples of this technique.

4. A functional equation

The table of sums and integrals [11] contains a small number of examples of finite
sums that involve trigonometric functions of multiple angles. In Section 1.36 we find

n∑

k=1

22k sin4 x

2k
= 22n sin2 x

2n
− sin2 x,(4.1)

and
n∑

k=1

1
22k

sec2 x

2k
= cosec2x− 1

22n
cosec2 x

2n
,(4.2)

and Section 1.37 consists entirely of the two sums
n∑

k=0

1
2k

tan
x

2k
=

1
2n

cot
x

2n
− 2 cot 2x(4.3)

and
n∑

k=0

1
22k

tan2 x

2k
=

22n+2 − 1
3 · 22n−1

+ 4 cot22x− 1
22n

cot2
x

2n
.(4.4)

In this section we present a systematic procedure to analyze these sums.
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Theorem 4.1. Let

F (x) =
∞∑

k=1

f(x, k) and G(x) =
∞∑

k=1

(−1)kf(x, k).(4.5)

Suppose f(x, 2k) = νf(λ(x), k) for some ν ∈ R and a function λ : R→ R. Then

F (x) = (2ν)nF (λ[n](x))−
n−1∑

j=0

(2ν)jG(λ[j](x)),(4.6)

where λ[n] denotes the composition of λ with itself n times.

Proof. Observe that

F (x) + G(x) = 2
∞∑

k=1

f(x, 2k) = 2ν

∞∑

k=1

f(λ(x), k) = 2νF (λ(x)).

Repeat this argument to obtain the result. ¤

Example 4.1. Let f(x, k) = 1/(x2 + k2), so that ν = 1/4 and λ(x) = x/2. Since

F (x) =
∞∑

k=1

1
x2 + k2

=
πx coth πx− 1

2x2

and

G(x) =
∞∑

k=1

(−1)k

x2 + k2
=

πx csch πx− 1
2x2

,

(4.6) yields, upon letting n →∞,
∞∑

j=0

x

sinh 2−jx
− 2j = 1− x

tanh x
.(4.7)

Now replace x by ln t, differentiate with respect to t, and set t = e to produce
∞∑

j=0

2j − coth 2−j

2j sinh 2−j
=

1 + 4e2 − e4

1− 2e2 + e4
.(4.8)

If we go back to (4.7), replace x by ln t, differentiate with respect to t, set t = ae,
differentiate with respect to a, and set a = e, we get

∞∑

j=0

2− 22j + csch22−j − sech22−j

22j sinh21−j
=

e12 − 17e8 − 17e4 + 1
e12 − 3e8 + 3e4 − 1

.(4.9)

Corollary 4.1. Let

F (x) =
∞∑

k=1

f
(x

k

)
and G(x) =

∞∑

k=1

(−1)kf
(x

k

)
.(4.10)

Then, for any n ∈ N,

F (x) = 2−nF (2nx) +
n∑

k=1

2−kG(2kx).(4.11)
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In particular, if F is bounded, then

F (x) =
∞∑

k=1

2−kG(2kx).(4.12)

Proof. The function f(x/k) satisfies the conditions of Theorem 4.1 with ν = 1
and λ(x) = x/2. Thus

F (x) = 2nF (x/2n)−
n−1∑

j=1

2jG(x/2j).

Now replace x by x/2n to obtain (4.11). Finally, let n →∞ to obtain (4.12). ¤

The key to the proof of Theorem 4.1 is the identity F (x) + G(x) = 2νF (λ(x)).
We next present an extension of this result.

Theorem 4.2. Let F, G be functions that satisfy

F (x) = r1F (m1x) + r2G(m2x)(4.13)

for parameters r1, r2,m1,m2. Then

r2

n∑

k=1

rk−1
1 G(mk−1

1 m2x) = F (x)− rn
1 F (mn

1x).(4.14)

Proof. Replace x by m1x in (4.13) to produce

F (m1x) = r1F (m2
1x) + r2G(m2m1x),

which, when combined with (4.13), gives

F (x) = r2
1F (m2

1x) + r1r2G(m1m2x) + r2G(m2x).

Formula (4.14) follows by induction. ¤

We now present two examples that illustrate Theorem 4.2. These sums appear as
entries in Ramanujan’s Notebooks.

Example 4.2. The identity

cot x =
1
2

cot
x

2
− 1

2
tan

x

2
(4.15)

shows that F (x) = cot x, G(x) = tan x satisfy (4.13) with r1 = 1/2, r2 = −1/2, and
m1 = m2 = 1/2. We conclude that

n∑

k=1

2−k tan
x

2k
=

1
2n

cot
x

2n
− cot x.(4.16)

This is (4.3). It also appears as Entry 24, page 364, of Ramanujan’s Third Notebook
as described in Berndt [4, page 396]. Similarly, the identity

sin2(2x) = 4 sin2 x− 4 sin4 x(4.17)

yields (4.1). The reader is invited to produce proofs of (4.2) and (4.4) in the style
presented here.



22 GEORGE BOROS AND VICTOR H. MOLL

Example 4.3. The identity

cot x = cot
x

2
− csc x(4.18)

satisfies (4.13) with F (x) = cot x, G(x) = csc x and parameters r1 = 1, r2 = −1, m1 =
1/2, m2 = 1. We obtain

n∑

k=1

csc
x

2k−1
= cot

x

2n
− cot x.(4.19)

This appears in the proof of Entry 27 of Ramanujan’s Third Notebook in Berndt [4,
page 398].

Example 4.4. The application of Theorem 4.1 or Corollary 4.1 requires an ana-
lytic expression for F and G. One source of such expressions is Jolley [12]. Indeed,
entries 578 and 579 are

∞∑

k=1

tan−1 2x2

k2
=

π

4
− tan−1 tanh πx

tanπx
(4.20)

and
∞∑

k=1

(−1)k−1tan−1 2x2

k2
= −π

4
+ tan−1 sinh πx

sin πx
.(4.21)

These results also appear in [5, page 314]. Applying one step of Proposition 4.1 we
conclude that

2 tan−1 tanh x

tanx
= tan−1 tanh 2x

tan 2x
+ tan−1 sinh 2x

sin 2x
.(4.22)

We also obtain
n∑

k=1

2−ktan−1 sinh 2k x

sin 2k x
= tan−1 tanh x

tan x
− 2−n tan−1 tanh 2n x

tan 2n x
,(4.23)

and by the boundedness of tan−1x conclude that
∞∑

k=1

2−k tan−1 sinh 2k x

sin 2k x
= tan−1 tanh x

tan x
.(4.24)

Differentiating (4.23) gives

2
n∑

k=1

cos 2kx sinh 2kx− cosh 2kx sin 2kx

cos 2k+1x− cosh 2k+1x

= − sin 2x− sinh 2x

cos 2x− cosh 2x
+

sin 2n+1x− sinh 2n+1x

cos 2n+1x− cosh 2n+1x
.

Letting n →∞ and using the identity

cos 2k+1x− cosh 2k+1x = −2
(
sin2 2kx + sinh2 2kx

)
(4.25)
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yields
∞∑

k=1

cosh 2kx sin 2kx− sinh 2kx cos 2kx

sin2 2kx + sinh2 2kx
=

sech2x tanx− tanh x sec2 x

tan2 x + tanh2 x
+ sign x.

For example, x = π gives
∞∑

k=1

csch 2kπ = coth π − 1.(4.26)

5. A dynamical system

In this section we describe a dynamical system involving arctangent sums. Define

xn = tan
n∑

k=1

tan−1k and yn = tan
n∑

k=1

tan−1 1
k

.

Then x1 = y1 = 1 and

xn =
xn−1 + n

1− nxn−1
and yn =

nyn−1 + 1
n− yn−1

.

Proposition 5.1. Let n ∈ N. Then

xn =

{
−yn if n is even
1/yn if n is odd

(5.1)

that is

tan
n∑

k=1

tan−1k = −tan
n∑

k=1

tan−1 1
k

(5.2)

if n is even and

tan
n∑

k=1

tan−1k = cotg
n∑

k=1

tan−1 1
k

(5.3)

if n is odd.

Proof. The recurrence formulas for xn and yn can be used to prove the result
directly. A pure trigonometric proof is presented next. If n is even then

tan
2m∑

k=1

tan−1k + tan
2m∑

k=1

tan−1 1
k

= tan
2m∑

k=1

tan−1k + tan
2m∑

k=1

(
π/2− tan−1k

)

= tan
2m∑

k=1

tan−1k + tan

(
πm−

2m∑

k=1

tan−1k

)

= 0.

A similar argument holds for n odd. ¤

This dynamical system suggests many interesting questions. We conclude by
proposing one of them: Observe that x3 = 0. Does this ever happen again?
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