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On the Lambek Invariants of Commutative Squares in
a Quasi-Abelian Category

Yaroslav Kopylov

Abstract. We consider the invariants Ker and Im for commutative squares in

quasi-abelian categories. These invariants were introduced by Lambek for groups

and then studied by Hilton and Nomura in categories exact in the sense of Buchs-
baum.

1. Introduction

In 1964, Lambek [13] introduced the following invariants for a commutative square

(1.1)

C D
α //C

A

g

��
A B

β //

D

B

f

��
S

in the category of groups:

ImS = (Imβ ∩ Im f)/ Im(fα), KerS = Ker(fα)/(Kerα+ Ker g).

In [13], he proved the following assertion.
Given a commutative diagram

(1.2)

A B
f // B C

g //A

A′

a

��

B

B′

b

��

C

C ′

c

��
A′ B′

f ′
// B′ C ′

g′
//

S T

of groups and group homomorphisms with exact rows, there is a natural isomorphism

Λ : ImS
∼=−→ KerT.
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58 YAROSLAV KOPYLOV

Later Leicht [14] extended this theorem to arbitrary Buchsbaum-exact catego-
ries [1, 15]. In [16, 17], Nomura considered the case where the rows in (1.2) are not
exact but only semiexact, constructed a canonical morphism Λ : ImS // KerT , and
proved that there is an exact sequence

(1.3) 0 → H(Ker(bf) → Ker b→ Ker c) → Ker(H → H ′) → ImS
Λ→ KerT

→ Coker(H → H ′) → H(Coker a→ Coker b→ Coker(g′b)) → 0,

where the arrows between the kernels and cokernels in parentheses are natural mor-
phisms, H(· → · → ·) stands for the homology of the 0-sequence in parentheses,
H = H(A → B → C), and H ′ = H(A′ → B′ → C ′). Later Ubeda Bescansa gener-
alized Nomura’s results to what he called categoŕıas Hofmanianas [28, 29], a special
case of a homological monoid [7].

In this paper, we study the Lambek invariants in quasi-abelian categories, first
considered by Răıkov in [22] under the name of semiabelian categories. Apart from
all abelian categories, the class of quasi-abelian categories contains many nonabelian
additive categories of functional analysis and topological algebra. The categories of
(Hausdorff or all) topological abelian groups, topological vector spaces, Banach (or
normed) spaces, filtered modules over filtered rings, and torsion-free abelian groups
are typical examples of quasi-abelian categories. The main difference between the
quasi-abelian and abelian categories lies in the fact that the standard diagram lemmas
hold in quasi-abelian categories under some extra conditions which usually amount to
the strictness of some morphisms. Quasi-abelian categories have been actively studied
in the recent years (see [4, 5, 9, 10, 11, 19, 20, 21, 23, 24, 25, 26]).

In the category Ban of Banach spaces topological abelian groups, the strictness
of a morphism α means that the range of α is closed. In the category of topological
abelian groups, a morphism α is strict if and only if its image is closed and, moreover,
α maps open sets onto open sets.

In a quasi-abelian category, Nomura’s morphism Λ : ImS // KerT is defined
only if b is strict in (1.2) because the definition uses the fact that b is the composition
of its image and coimage. Lambek’s isomorphism holds under the same condition
(see [16]).

The structure of the paper is as follows. In Section 2, we recall some basic defini-
tions and facts about quasi-abelian categories. In Section 3, we construct a morphism
ζ : KerT // ImS for a diagram (1.2) with exact rows in the general case and suggest
quasi-abelian versions for some assertions proved by Nomura [16] and Hilton [6] for
abelian and Buchsbaum-exact categories.
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All diagrams in the paper were made using Prof. Michael Barr’s diagxy macro
package.

2. Quasi-Abelian Categories

We consider additive categories satisfying the following axiom.

Axiom 1. Each morphism has kernel and cokernel.

We denote by kerα (cokerα) an arbitrary kernel (cokernel) of α and by Kerα
(Cokerα) the corresponding object; the equality a = ker b (a = coker b) means that a
is a kernel of b (a is a cokernel of b).

In a category meeting Axiom 1, every morphism α admits a canonical decomposi-
tion α = (imα)α(coimα) = (imα)α̃, where imα = ker cokerα, coimα = coker kerα.
Two canonical decompositions of the same morphism are obviously naturally isomor-
phic. A morphism α is called strict if α is an isomorphism.

We use the following notations of [12]:
Oc is the class of all strict morphisms,
M is the class of all monomorphisms,
Mc is the class of all strict monomorphisms (= kernels),
P is the class of all epimorphisms,
Pc is the class of all strict epimorphisms (= cokernels).

Lemma 2.1 ([2, 3, 12, 22]). The following assertions hold in an additive category
meeting Axiom 1:

(1) kerα ∈Mc and cokerα ∈ Pc for every α;
(2) α ∈Mc ⇐⇒ α = imα, α ∈ Pc ⇐⇒ α = coimα;
(3) a morphism α is strict if and only if it is representable in the form α = α1α0

with α0 ∈ Pc, α1 ∈Mc; in every such representation, α0 = coimα and α1 = imα;
(4) if some commutative square

C D
α //C

A

g

��
A B

β //

D

B

f

��

is a pullback then ker f = α(ker g) and f = ker ξ implies g = ker(ξβ); in particular,
f ∈ M =⇒ g ∈ M and f ∈ Mc =⇒ g ∈ Mc. Dually, if the square is a pushout, then
coker g = (coker f)β and g = coker ζ implies f = coker(αζ); in particular, g ∈ P =⇒
f ∈ P and g ∈ Pc =⇒ f ∈ Pc.

An additive category meeting Axiom 1 is abelian if and only if α is an isomorphism
for every α. Consider the following axiom.

Axiom 2. For every morphism α, α is a bimorphism, i.e., a monomorphism and
an epimorphism.

We write α‖β if the sequence · α−→ · β−→ · is exact, that is, imα = kerβ (which,
in a category meeting Axioms 1 and 2, is equivalent to cokerα = coimβ). The special
case of this where α = kerβ and β = cokerα is written as α|β.
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Lemma 2.2 ([10]). The following assertions hold in an additive category satisfying
Axioms 1 and 2:

(1) if gf ∈Mc then f ∈Mc; if gf ∈ Pc then g ∈ Pc;
(2) if f, g ∈ Mc and fg is defined then fg ∈ Mc, if f, g ∈ Pc and fg is defined

then fg ∈ Pc;
(3) if fg ∈ Oc and f ∈M then g ∈ Oc, if fg ∈ Oc and g ∈ P then f ∈ Oc.

It is well known (see, for example, [18]), that every abelian category satisfies the
following two axioms dual to one another.

Axiom 3. If (1) is a pullback then f ∈ Pc =⇒ g ∈ Pc.

Axiom 4. If (1) is a pushout then g ∈Mc =⇒ f ∈Mc.

An additive category satisfying Axioms 1, 3, and 4, is called quasi-abelian. Such
categories are also known as (Răıkov)-semiabelian (the original name, proposed by
Răıkov in [22] and used in the Russian tradition; now, however, the term semi-abelian
category is involved in a quite different context [8]) or almost abelian [24]. As follows
from Theorem 1 of [12], each quasi-abelian category meets Axiom 2.

Given an arbitrary commutative square (1.1), denote by ĝ : Kerα // Kerβ the
morphism defined by the equality g(kerα) = (kerβ)ĝ and by f̂ : Cokerα // Cokerβ
the morphism defined by the condition f̂(cokerα) = (cokerβ)f .

From now on, unless otherwise specified, the ambient category A is assumed quasi-
abelian.

Lemmas 5 and 6 of [10] yield the following assertion.

Lemma 2.3 ([10]). Suppose that square (1.1) is a pullback. If β ∈ Oc then α ∈ Oc
and f̂ ∈M .

Dually, if (1.1) is a pushout and α ∈ Oc then β ∈ Oc and ĝ ∈ P .

Lemma 2.4 (The Composition Lemma). Suppose that the composition gf of two
morphisms f and g is defined. Then there exists a semiexact sequence

(2.1) 0 // Ker f
ϕ

// Ker(gf)
ψ

// Ker g
χ

// Coker f
λ // Coker(gf)

ω // Coker g // 0

which is exact at Ker f , Ker(gf), Coker(gf), and Coker g; moreover, ϕ and ω are
strict. Furthermore, if f ∈ Oc then (2.1) is exact at Ker g and ψ ∈ Oc; if g ∈ Oc
then (2.1) is exact at Coker f and λ ∈ Oc.

Proof. As in an abelian category, we define ϕ, ψ, χ, λ, and ω by the equali-
ties ker f = (ker(gf))ϕ, f(ker(gf)) = (ker g)ψ, χ = (coker f)(ker g), (coker(gf))g =
λ(coker g), and coker g = ω(coker(gf)). Then it is standard (and easy) that se-
quence (2.1) thus obtained is semiexact, ϕ = kerψ, and ω = cokerλ. Furthermore, it
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is easy to check that the square

(2.2)

Ker(gf) ·
ker(gf) //Ker(gf)

Ker g

ψ

��
Ker g ·

ker g //

·

·

f

��

is a pullback.
Suppose that f is strict. Applying Lemma 2.3 to pullback (2.2), we see that

ψ ∈ Oc and the morphism l defined by the equality l(cokerψ) = (coker f)(ker g) (= χ)
is monic. Thus, imψ = kerχ, which proves the exactness at Ker g. By duality, we
infer that λ ∈ Oc and (2.1) is exact at Coker f . �

3. Lambek Invariants

Given a commutative square (1.1), consider the pullback

(3.1)

I Im f
k //I

Imβ

l

��
Imβ B

im β //

Im f

B

im f

��

Easily, there are morphisms k′ : Im(fα) // Im f and l′ : Im(fα) // Imβ with
im(fα) = (im f)k′ = (imβ)l′. Since (3.1) is a pullback, there is a unique morphism
ρ : Im(fα) // I such that k′ = kρ and l′ = lρ. We put ImS = Coker ρ. If we denote
by Φ the epimorphism f̃α then, obviously, ImS = Coker(ρΦ).

Now, let µ : Ker g // Ker(fα) and ν : Kerα // Ker(fα) be the natural
inclusions. They form a morphism 〈µ, ν〉 : Ker g ⊕ Kerα // Ker(fα). We put
KerS = Coker〈µ, ν〉. Alternatively, KerS can be described as follows (see, for exam-
ple, [16]). Consider the pushout

C Coimα
coimα //C

Coim g

coim g

��
Coim g J

i //

Coimα

J

j

��

There is a unique morphism σ : L // B such that σj = f(imα)ᾱ and σi = β(im g)ḡ.
Then KerS is naturally isomorphic with Kerσ. Thus, ImS and KerS are dual notions.

In what follows, we endow all the morphisms and objects introduced above for
a commutative square S with the subscript S when it becomes necessary to distinguish
the corresponding morphisms of different squares.

The condition ImS = 0 (KerS = 0) is fulfilled for an important class of pullbacks
in a quasi-abelian category. Namely, the following assertion holds.

Theorem 3.1. Suppose that square (1.1) is a pullback with β and f strict. Then
ImS = 0. If (1.1) is a pushout with α and g strict then KerS = 0.
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Proof. Consider the commutative diagram

F ·
v1 // · D

w1 //F

·

v2

��

·

I

v0

��

D

Im f

coim f

��
· I// I Im f

k //·

A

w2

��

I

Imβ

l

��

Im f

B,

im f

��
A Imβ

coim β // Imβ B,
im β //

where all the four squares are pullbacks. Then the “resulting” square is a pullback, too
(see, for example, [3], Proposition 2.10). Thus, up to an isomorphism, we have C = F ,
w1v1 = α, and w2v2 = g. Since w1, w2 ∈ Mc and v1, v2 ∈ Pc, by Lemma 2.1(3)
it follows that w1 = imα, v1 = coimα, w2 = im g, and v2 = coim g. Therefore,
im(fα) = im((im f)kv0v1) = (im f)k, and hence I = Im(fα), which implies ImS = 0.

The second assertion is proved by duality. �

Remark 3.1. By Lemma 2.3, if square (1.1) is a pullback with β ∈ Oc (f ∈ Oc)
then α ∈ Oc (g ∈ Oc). This means that Theorem 3.1 applies to “strict” pullbacks.
However, it fails for “nonstrict” pullbacks, which is demonstrated by the following
example. Consider the category Ban of Banach spaces and bounded linear operators.
Let A and B be infinite-dimensional Banach spaces and let β : A // B be a linear
operator with dense range R(β) 6= B (and so β 6∈ Oc!). Put D = R and suppose
that f : D // B is injective and R(f) ∩ R(β) = 0. Form a pullback fα = βg. For
a morphism L : X // Y in Ban, ImL is the closure R(L) of its range R(L). It is easy
to see that α = 0 and hence Im(fα) = 0. However, in this case, I = R(β) ∩ R(f) ∼=
R 6= 0. Thus, ImS ∼= R.

Remark 3.2. The class of commutative squares S with ImS = 0 (KerS = 0)
is not reduced to “strict” pullbacks (pushouts). As was observed by Hilton (see [6],
Proposition 2.4) and is easily checked, each composition h = gf yields two commuta-
tive squares ∆′ : h(id) = gf and ∆′′ : (id)h = gf such that Im ∆′ = 0 and Ker∆′′ = 0.
Obviously, ∆′ is a pullback if and only if g is monic (similarly, ∆′′ is a pushout if and
only if f is epic). Hence, a commutative square S need not be a pullback (pushout)
to have ImS = 0 (KerS = 0).

As we noted in the introduction, for a sequence of the form (1.2) with exact
rows, KerS and ImT are known to be naturally isomorphic (see [14] or [16]) in a
Buchsbaum-exact category. For this to hold in a quasi-abelian category, one must have
Im b = Coim b, that is, bmust be strict. On the same assumption, we can use Nomura’s
construction of Λ : ImS // KerT for a diagram of the form (1.2) with semiexact
rows. Recall that Λ is characterized by the equality (kerσT )Λ(coker ρS) = iT kS [16].

When the rows in (1.2) are exact, we can still construct a canonical morphism
ζ : KerT // ImS. Of course, ζ = Λ−1 if Λ exists. Namely, we have
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Theorem 3.2. Suppose that in (1.2) the rows are exact. Then there exist unique
morphisms ξ : Ker(g′b) // IS and ζ : KerT // ImS such that

(coker ρs)ξ = ζ coker〈µT , νT 〉.

Proof. Obviously, g′b(ker(g′b)) = 0, which implies that there exists a unique
morphism y with b ker(g′b)) = (ker g′)y0 = (im f ′)y0. Since (3.1) is a pullback, there
exists a unique morphism ξ : Ker(g′b) // ImS such that b̃(ker(g′b)) = kSξ and
y = lSξ. We have

kSξµT = b̃(ker(g′b))µT = b̃(ker b) = 0,

whence ξµT = 0 because kS is monic. Now, denote by γ = γS the unique morphism
for which im(bf)γ = b(im f) (= b(ker g) by the exactness of the upper row in (1.2)).
We infer

(im b)kSρSγS f̃ = (im(bf))γS f̃ = b(im f)f̃ = bf

= (im b)b̃(ker(g′b))νT f̃ = (im b)kSξνT f̃ .

Since (imϕ)k ∈ M and f̃ ∈ P , it follows that ξνT = ρSγS . Hence (coker ρS)ξνT =
(coker ρS)ξ〈µT , νT 〉 = 0. Therefore, there exists a unique morphism ζ : Coker〈µ, ν〉

// Coker ρS such that

(coker ρS)ξ = ζ coker〈µT , νT 〉.

�

As a corollary to Theorem 3.2, we obtain Lambek’s isomorphism, established for
Buchsbaum-exact categories in [13, 14, 16], which, in our case, holds under the extra
assumption that b ∈ Oc. Note that, in view of the exactness properties of the Ker-
Coker-sequence in a quasi-abelian category proved in [10], Nomura’s proof of Lambek’s
isomorphism in [16] is carried over to our situation literally. However, here we prefer
to show how ζ becomes an isomorphism if b is strict.

Corollary 3.1. If, under the conditions of Theorem 3.2, b ∈ Oc then ζ is an
isomorphism.

Proof. First, observe that the square

(3.2)

Ker(g′b) B
ker(g′b)//Ker(g′b)

I

ξ

��
I Im b

kS //

B

Im b

b̃

��

is a pullback.
Indeed, suppose that morphisms x1 and x2 are such that kSx1 = b̃x2. Then

g′bx2 = g′(im b)b̃x2 = g′(im b)kSξ = g′(im f ′)lSξ = g′(ker g′)lSξ = 0.
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Therefore, there exists a unique morphism x with x2 = (ker(g′b))x. We now prove
that x1 = ξx. We have

(im b)kSξx = (im f ′)lSξx = (ker g′)lSξx = b(ker(g′b))x

= (im b)b̃(ker(g′b))x = (im b)b̃x2 = (im b)kSx1,

from which, by the fact that (im b)kS is monic, we see that ξx = x1. Thus, we have
demonstrated that (3.2) is a pullback.

Since ker b = ker b̃ = (ker(g′b))µT , b ∈ Oc, and (3.2) is a pullback, from Lemma 2.1(4)
and Axiom 3 it follows that µT |ξ. Obviously, we have (coker〈µT , νT 〉)µT = 0, and so
there exists a unique morphism τ : I // Coker〈µT , νT 〉 such that coker〈µT , νT 〉 = τξ.
We have ζτξ = (coker ρS)ξ, and the relation ξ ∈ Pc yields ζτ = coker ρS . Furthermore,

(3.3) τρSγS = τξνT = (coker〈µT , νT 〉)νT = 0.

Since γS f̃ = Φ, it follows that γS is epic and so (3.3) implies that τρS = 0. Thus
there is a unique morphism Λ0 : Coker ρ // Coker〈µT , νT 〉 with the property τ =
Λ0(coker ρ). Easily, ζΛ0 and Λ0ζ are identities and, therefore, ζ and Λ0 are mutually
inverse isomorphisms. �

It can be proved that, up to the identification KerT ∼= KerσT , Λ0 is Nomura’s
morphism Λ.

We now pass to the more general case of a commutative diagram of the form (1.2)
with semiexact rows.

In the case of a Buchsbaum-exact category, Nomura constructed exact sequen-
ce (1.3). However, an analysis of the proof of the exactness of (1.3) in [16] (based on
the Composition Lemma, cf. Lemma 2.4) shows that, in the quasi-abelian case, many
morphisms must be assumed strict so that all morphisms in (1.3) can be defined. We
prove the following quasi-abelian version of Corollary A2 of [16].

Theorem 3.3. Suppose that in diagram (1.2) the rows are semiexact. The follow-
ing asserions hold.

(1) If the sequence A′ → B′ → C ′ is exact and b ∈Mc then there exists a canonical
morphism θ : H(A→ B → C) → ImS such that the sequence

0 // H(A→ B → C)
θ // ImS

Λ // KerT // 0

is exact.
(2) If the sequence A→ B → C is exact and b ∈ Pc then there exists a canonical

morphism κ : KerT → H(A′ → B′ → C ′) such that the sequence

0 // ImS
Λ // KerT

κ // H(A′ → B′ → C ′) // 0

is exact.

Proof. We prove only item (1) because item (2) is obtained from it by duality.
By definition, the homology object H(A→ B → C) is the cokernel of the unique

morphism ε such that im f = (ker g)ε. Consequently, (coker ρS)ξνT ε = 0 and, there-
fore, there exists a unique morphism θ with (coker ρS)ξνT = θ(coker ε). Repeating
the argument of the proof of Theorem 3.2 almost literally, we see that ρSγS = ξνT ε.
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Furthermore, since b(im f) = (im(bf))γS , b is a kernel, and the proof of Corollary 3.1
implies that γS is epic, it follows that γS is in fact an isomorphism. In addition, ξ is an
isomorphism, too. Indeed, as above, ξ is a part of pullback (3.2), which implies that
ξ ∈ Pc and (ker(g′b))(ker ξ) = ker b̃ = (ker(g′b))µT = 0. Thus µT = 0 and hence ξ is in
fact an isomorphism. Thus we may write ρS = νT ε. Since we thus obtain a pullback
ρS id = νT ε and νT ∈ Oc, the morphism of the cokernels θ : Coker ε // Coker ρS is
monic. Thus we see the exactness at H(A→ B → C).

Furthermore, since

Λθ(coker ε) = Λ(coker ρS)ξνT = (coker〈µt, νT 〉)νT = 0,

we infer Λθ = 0. Now, take a morphism y with yθ = 0. Then y(coker ρS)ν =
yθ(coker ε) = 0 and, obviously, y(coker ρS)µT = 0. Hence, there exists a unique
morphism v with y(coker ρS) = v(coker〈µT , νT 〉) = vΛ(coker ρS). Since coker ρS is
epic, y = vΛ. Thus, Λ = coker θ and so we have the exactness at ImS. �

We now prove another assertion about a diagram of commutative squares (cf.
Proposition 2.7 in [6]).

Theorem 3.4. Suppose that, in a commutative diagram

(3.4)

A1 B1
θ1 // B1 C1

θ2 //A1

A2

α1

��

B1

B2

β1

��

C1

C2

γ1

��
A2 B2

ϕ1 // B2 C2

ϕ2 //

S T

A2

A3

α2

��

B2

B3

β2

��

C2

C3

γ2

��
A3 B3

ψ1 // B3 C3

ψ2 //

U V

,

the first column is exact at A2, the third, at C2, and the second row is exact at B2,
ImT = 0, KerU = 0, β2β1 = 0, ϕ1 ∈ Oc, and ϕ2β1 ∈ Oc. Then the second column is
exact at B2.

Proof. Take a morphism x : X // B2 such that β2x = 0. We may assume
that x = imx. We have γ2ϕ2x = 0; therefore, there exists a unique morphism y such
that ϕ2x = (im γ1)y. Since (imϕ2)ϕ̃2x = (im γ1)y and ImT = 0, there is a unique
morphism ξ : X // Im(ϕ2β1) with the properties ϕ̃2x = lT ξ and y = kT ξ. Thus,
ϕ2x = (imϕ2)lξ = im(ϕ2β1)ξ. Define ω by the equality ϕ2β1 = im(ϕ2β1)ω. Then ω ∈
Pc. Consider a pullback ξω0 = ωξ0. We have im(ϕ2β1)ξω0 = im(ϕ2β1)ωξ0 = ϕ2β1ξ0.
Thus, ϕ2(xω0 − β1ξ0) = 0, from which we deduce the existence of a unique morphism
ξ1 such that xω0 − β1ξ0 = (kerϕ2)ξ1 = (imϕ1)ξ1. Let ξ0p0 = ϕ̃1ξ1 be a pullback.
Then

0 = β2xω0 = β2(imϕ1)ξ0p0 = β2(imϕ1)ϕ̃1ξ1 = β2ϕ1ξ1.

Since KerU = 0, it follows that Ker(β2ϕ1) ∼= Kerϕ1 ⊕ Kerα2. Consequently, ξ1 =
(kerϕ1)t1 + (kerα2)t2 = (kerϕ1)t1 + (imα1)t2 for some t1 and t2. Furthermore, there
exists a unique morphism u with ϕ1(imα1) = (imβ1)u. We infer

xω0p0 = β1ξ0p0 + ϕ1(imα1)t2 = β1ξ0p0 + (imβ1)ut2 = (imβ1)(β̃1ξ0p0 + ut2).
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Thus, xω0p0 = (imβ1)v, i. e., xω0p0 = (imβ1)(im v)v̄(coim v). The hypothesis implies
that ω0p0 ∈ Pc. Therefore, x = (imβ1)(im v), which means that imβ1 = kerβ2. �

For abelian categories, Theorem 3.4 was proved by Hilton (see [6], Proposition 2.7)
and served as a key ingredient in the proof of the main theorem in [6] on the exactness
of a system of interlocking exact sequences. In the quasi-abelian case, we have to
add some strictness conditions to Hilton’s Proposition 2.7. Unfortunately, applying
Theorem 3.4 to interlocking sequences (and thus to spectral sequences) is possible only
if we assume all the morphisms strict. We dealt with spectral sequences by considering
exact couples in quasi-abelian categories in a separate paper [9].
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