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Singularities of quasiregular mappings on Carnot groups

Irina Markina

Abstract. In 1970 Poletskĭı applied the method of the module of a family of curves
to describe behavior of quasiregular mappings (in another terminology mappings

with bounded distortion) in Rn. In the present paper we generalize a result by

Poletskĭı and study a singular set of a quasiregular mapping using the method of
the module of a families of curves on Carnot groups.

1. Introduction

A mapping with bounded distortion is a natural generalization of an analytic func-
tion of one complex variable to the Euclidean space of the dimension n > 2. It was
firstly introduced and studied by Reshetnyak in 1966—1968 [29, 30, 31]. In some sense
it is a quasiconformal mapping admitting branch points. Later these mappings, under
the name quasiregular mappings, were investigated intensively by Martio, Rickman,
Väisälä, Gehring, Vuorinen, Bojarski, Iwaniec and others [4, 12, 23, 24, 33, 37].

The method of extremal lengths or the module of a family of curves was actively
employed to treat analytic functions and quasiconformal mappings (see, for example, [1,
2, 5, 38]). Poletskĭı successfully applied this method to study quasiregular mappings
and obtained some interesting and fundamental results [27, 28].

Recently, the analysis on homogeneous groups has been developed intensively. Qua-
siconformal mappings on a homogeneous group of special type were initially considered
by Mostow [25] in 1971 in connection with the rigidity theorems for the rank one sym-
metric space. Quasiconformal and quasiregular mappings on the Carnot groups have
been studied, for instance, in [8, 9, 14, 18, 35].

The main result of this paper concerns with a characteristic of a singular set of
quasiregular mappings. This singular set is defined in terms of the module of a family
of locally rectifiable curves on Carnot groups. We prove that the module of a family of
curves terminating on a closed set vanishes, if the module of a sub-family of this family,
starting on a closed set of positive capacity, also vanishes. Precisely, let G be a Carnot
group, Ω ⊂ G be a domain, and f : Ω → G be a quasiregular mapping. Set I, A closed
sets in Ω. By Γ?(I) we denote the family of horizontal curves in f(Ω) admiting a lifting
Γ(I; Ω) terminating on the set I ⊂ Ω. We use the notation Γ?(A; I) for the family of
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horizontal curves in f(Ω), such that the lifting of these curves Γ(A, I; Ω) starts on the
set A ⊂ Ω and terminates on I ⊂ Ω. We prove the next theorem.

Theorem 1.1. Let I, A be closed disjoint sets in Ω ⊂ G, such that cap A > 0.
Then M(Γ?(I)) = 0, if and only if M(Γ?(A, I)) = 0.

In the next section the reader can find the exact definitions and preliminary results.

2. Definitions and preliminaries

The Carnot group is a connected and simply connected nilpotent Lie group G whose
Lie algebra G decomposes into the direct sum of vector subspaces V1 ⊕ V2 ⊕ . . . ⊕ Vm

satisfying the following relations:

[V1, Vi] = Vi+1, 1 6 i < m, [V1, Vm] = {0}.

We identify the Lie algebra G with a space of left-invariant vector fields. Let
X11, . . . , X1n1 be a basis of V1, n1 = dim V1, and 〈·, ·〉0 be a left-invariant Riemannian
metric on V1 such that

〈X1i, X1j〉0 =
{

1 if i = j,
0 if i 6= j.

Then, V1 determines a subbundle HT of the tangent bundle TG. We call HT the
horizontal tangent bundle of G with HTq as the horizontal tangent space at q ∈ G.
Respectively, the vector fields X1j , j = 1, . . . , n1, are said to be horizontal vector fields.

Next, we extend X11, . . . , X1n1 to a basis Xij , i = 1, . . . ,m, j = 1, . . . , nj = dim Vi,
of G. It is known (see, for instance, [10]) that the exponential map exp : G → G from
the Lie algebra G into the Lie group G is a global diffeomorphism. We can identify

the points q ∈ G with the points x ∈ RN , N =
m∑

i=1

dim Vi, by means of the mapping

q = exp
( ∑

i,j

xijXij

)
. The number N =

m∑
i=1

dim Vi is the topological dimension of the

Carnot group. The bi-invariant Haar measure on G is denoted by dx; this is the push-
forward of the Lebesgue measure in RN under the exponential map. The family of
dilations {δλ(x) : λ > 0} on the Carnot group is defined as δλx = δλ(xij) = (λixij).

Moreover, d(δλx) = λQdx and the quantity Q =
m∑

i=1

idim Vi is called the homogeneous

dimension of G.
Example 1. The Euclidean space Rn with the standard structure is an example

of an Abelian group. The exponential map is the identical mapping and the vector
fields Xi = ∂

∂xi
, i = 1, . . . , n, have only trivial commutators and constitute a basis for

the corresponding Lie algebra.
Example 2. The simplest example of a non-abelian Carnot group is the Heisenberg

group Hn. The non-commutative multiplication is defined as

pq = (x, y, t)(x′, y′, t′) = (x + x′, y + y′, t + t′ − 2xy′ + 2yx′),
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where x, x′, y, y′ ∈ Rn, t, t′ ∈ R. Left translation Lp(·) is defined as Lp(q) = pq. The
left-invariant vector fields

Xi =
∂

∂xi
+ 2yi

∂

∂t
, Yi =

∂

∂yi
− 2xi

∂

∂t
, i = 1, . . . , n, T =

∂

∂t
,

constitute the basis of the Lie algebra of the Heisenberg group. All non-trivial relations
are only of the form [Xi, Yi] = −4T , i = 1, . . . , n, and all other commutators vanish.
Thus, the Heisenberg algebra has the dimension 2n + 1 and splits into the direct sum
G = V1 ⊕ V2. The vector space V1 is generated by the vector fields Xi, Yi, i = 1, . . . , n,
and the space V2 is the one-dimensional center which is spanned by the vector field T .
For more information see [17].

Example 3. A Carnot group is said to be of H-type if the Lie algebra G = V1⊕V2 is
two-step and if the inner product 〈·, ·〉0 in V1 can be extended to an inner product 〈·, ·〉
in all of G so that the linear map J : V2 → End(V1) defined by 〈JZU, V 〉 = 〈Z, [U, V ]〉
satisfies J2

Z = −〈Z,Z〉 Id for all Z ∈ V2. For the moment we introduce the notation
‖Z‖2 = 〈Z,Z〉. Then ‖JZV ‖ = ‖Z‖ · ‖V ‖ and 〈V, JZV 〉 = 0 for all V ∈ V1 and Z ∈ V2.
More details and information see in [7, 16].

A homogeneous norm on G is, by definition, a continuous function | · | on G which
is smooth on G r {0} and such that |x| = |x−1|, |δλ(x)| = λ|x|, and |x| = 0 if and
only if x = 0. The norm | · | defines a pseudo-distance: d(x, y) = |x−1y| satisfying the
generalized triangle inequality d(x, y) 6 $(d(x, z)+d(z, y)) with a positive constant $.
By B(x, r) we denote an open ball in the metric d of radius r > 0 centered at x. By
mes(E) we denote the measure of the set E. Our normalizing condition is such that
the balls of radius one have measure one: mes(B(0, 1)) =

∫
B(0,1)

dx = 1. We have
mes(B(0, r)) = rQ because the Jacobian of the dilation δr is rQ.

A continuous map γ : I → G is called a curve. Here I is a (possibly unbounded)
interval in R. If I = [a, b] then we say that γ : [a, b] → G is a closed curve. A closed
curve γ : [a, b] → G is rectifiable if sup

{∑p−1
k=1 d

(
γ(tk), γ(tk+1)

)}
< ∞, where the

supremum ranges over all partitions a = t1 < t2 < . . . < tp = b of the segment [a, b].
Pansu proved in [26] that any rectifiable curve is differentiable almost everywhere in
(a, b) in the Riemannian sense and there exist measurable functions aj(s), s ∈ (a, b),
such that

γ̇(s) =
n1∑

j=1

aj(s)X1j(γ(s)) and d
(
γ(s + τ), γ(s) exp(γ̇(s)τ)

)
= o(τ) as τ → 0

for almost all s ∈ (a, b). The length l(γ) of a rectifiable curve γ : [a, b] → G can be
calculated by the formula

l(γ) =

b∫
a

〈γ̇(s), γ̇(s)〉1/2
0 ds =

b∫
a

( n1∑
j=1

|aj(s)|2
)1/2

ds

where 〈·, ·〉0 is the left invariant Riemannian metric on V1. A result of [6] implies that
one can connect two arbitrary points x, y ∈ G by a rectifiable curve. The Carnot-
Carathéodory distance dc(x, y) is the infimum of the lengths over all rectifiable curves
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with endpoints x and y ∈ G. The Hausdorff dimension of the metric space (G, dc)
coincides with the homogeneous dimension Q of the group G.

Definition 2.1. A function u : Ω → R, Ω ⊂ G, is said to be absolutely continuous
on lines (u ∈ ACL(Ω)) if for any domain U b Ω, and any fibration Xj defined by the
left-invariant vector fields X1j , j = 1, . . . , n1, the function u is absolutely continuous
on γ ∩ U with respect to the H1-Hausdorff measure for dγ-almost all curves γ ∈ Xj .
(Recall that the measure dγ on Xj equals the inner product i(Xj) of the vector field
Xj by the bi-invariant volume form dx.)

The Sobolev space W 1
p (Ω) (L1

p(Ω)), 1 6 p < ∞, consists of locally summable
functions u : Ω → R, Ω ⊂ G, having distributional derivatives X1ju along the vector
fields X1j and the finite norm

‖u | W 1
p (Ω)‖ =

(∫
Ω

|u|p dx
)1/p

+
(∫

Ω

|∇0u|p0 dx
)1/p

(
semi-norm ‖u | L1

p(Ω)‖ =
(∫

Ω

|∇0u|p0 dx
)1/p)

.

Here ∇0u = (X11u, . . . , X1n1u) is the subgradient of u and |∇0u|0 = 〈∇0u,∇0u〉0.
We say, that u belongs to W 1

p,loc(Ω) if for an arbitrary bounded domain U , U ⊂ Ω,
the function u belongs to W 1

p (U). For a function u ∈ ACL(Ω), the derivatives X1ju
along the vector fields X1j , j = 1, . . . , n1, exist almost everywhere in Ω. It is known
that a function u : Ω → R belongs to W 1

p (Ω) (L1
p(Ω)), 1 6 p < ∞, if and only if it

can be modified on a set of measure zero by such a way that u ∈ Lp(Ω) (u is locally
p-summable), u ∈ ACL(Ω), and X1ju ∈ Lp(Ω) hold, j = 1, . . . , n1.

Definition 2.2. A mapping f : Ω → G, Ω ⊂ G, belongs to the Sobolev class
W 1

p,loc(Ω), 1 6 p < ∞, if and only if it can be modified on a set of measure zero by
such a way that

1) |f(x)| ∈ Lp,loc(Ω);
2) the coordinate functions fij belong to ACL(Ω) for all i and j;
3) f1j ∈ W 1

p,loc(Ω) for 1 6 j 6 n1;
4) the vector X1k(f(x)) =

∑
16l6m,16ω6nl

X1k(flω(x)) ∂
∂xlω

belongs to HTf(x) for

almost all x ∈ Ω and all k = 1, . . . , n1.

In [13, 36], one can find various definitions of the Sobolev space on Carnot groups
and their correlations. The matrix X1kf = (X1kf1j)k,j=1,...,n1 defines a linear operator
DHf : V1 → V1 [26] which is called a formal horizontal differential. A norm of the
operator DHf is defined by

|DHf(x)| = sup
ξ∈V1,|ξ|0=1

|DHf(x)(ξ)|0.

The norm |DHf | is equivalent to |∇0f |0 =
( n1∑

i=1

|X1if |20
) 1

2
. It has been proved in [36]

that the formal horizontal differential DHf generates a homomorphism Df : G → G of
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Lie algebras which is called a formal differential. The determinant of the matrix Df(x)
is denoted by J(x, f) and called a (formal) Jacobian.

A continuous map f : Ω → G, Ω ⊂ G, is open if the image of an open set is open
and discrete if the pre-image f−1(y) of each point y ∈ f(Ω) consists of isolated points.
We say that f is sense-preserving if a topological degree µ(y, f, U) is strictly positive
for all domains U , U ⊂ Ω and y ∈ f(U) r f(∂U).

Definition 2.3. Let Ω be a domain on the group G. A mapping f : Ω → G is
said to be a quasiregular mapping if

1) f is continuous open discrete and sense-preserving ;
2) f belongs to W 1

Q,loc(Ω);
3) the formal horizontal differential DHf satisfies the condition

(2.1) max
|ξ|0=1,ξ∈V1

|DHf(x)(ξ)|0 6 K min
|ξ|0=1,ξ∈V1

|DHf(x)(ξ)|0

for almost all x ∈ Ω.

It is known [36] that the pointwise inequality (2.1) is equivalent to the following
one: the formal horizontal differential DHf satisfies the condition

(2.2) |DHf(x)|Q 6 K ′J(x, f)

for almost all x ∈ Ω where K ′ depends on K. The smallest constant K ′ in inequality
(2.2) is called the outer distortion and denoted by KO(f). It is not hard to see that
for a quasiregular mapping the inequality

(2.3) 0 6 J(x, f) 6 K
′′

min
|ξ|0=1,ξ∈V1

|DHf(x)(ξ)|Q0

also holds for almost all x ∈ Ω where K
′′

depends on K. The smallest constant K
′′

in
inequality (2.3) is called the inner distortion and denoted by KI(f).

Definition 2.4. A continuous mapping f : Ω → G is P-differentiable at x ∈
Ω if the family of maps ft = δ1/t(f(x)−1f(xδty)) converges locally uniformly to an
automorphism of G as t → 0.

In the following theorem we formulate some analytic properties of quasiregular
mappings [35, 36]. We denote by Bf the set of points where a quasiregular mapping f
is not homeomorphic. In the statement of the theorem we use notions of the topological
degree µ(y, f, D) of the mapping f and the multiplicity function N(y, f, A) = card{x ∈
f−1(y) ∩A} (see the precise definitions, for instance, in [34]).

Theorem 2.1. Let f : Ω → G, Ω ⊂ G, be a quasiregular mapping. Then it
possesses the following properties:

1) f is P-differentiable almost everywhere in Ω;
2) N -property: if mes(A) = 0 then mes(f(A)) = 0;
3) N−1-property: if mes(A) = 0 then mes(f−1(A)) = 0;
4) mes(Bf ) = mes(f(Bf )) = 0;
5) J(x, f) > 0 almost everywhere in Ω;
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6) for every compact domain D b Ω such that mes(f(∂D)) = 0 (every mea-
surable set A ⊂ Ω) and every measurable function u, the function y 7→
u(y)µ(y, f, D) (y 7→ u(y)N(y, f, D)) is integrable in G if and only if the func-
tion (u ◦ f)(x)J(x, f) is integrable on D (A); moreover, the following change
of variable formulas hold:

(2.4)
∫
D

(u ◦ f)(x)J(x, f) dx =
∫
G

u(y)µ(y, f, D) dy,

(2.5)
∫
A

(u ◦ f)(x)J(x, f) dx =
∫
G

u(y)N(y, f, A) dy.

If A is a closed set in an open set Ω ∈ G, then we use the following definition of
the capacity:

cap A = inf
∫
G

|∇0v|Q dx,

where the infimum is taken over all non-negative functions v ∈ C∞
0 (Ω), such that

v|A > 1.
The linear integral is defined by

∫
γ

ρ ds = sup
∫

γ′ ρ ds = sup
∫ l(γ′)

0
ρ(γ′(s)) ds, where

the supremum is taken over all closed parts γ′ of γ and l(γ′) is the length of γ′. Let Γ
be a family of curves in G. Denote by F(Γ) the set of Borel functions ρ : G → [0;∞],
such that the inequality

∫
γ

ρ ds > 1 holds for locally rectifiable curves γ ∈ Γ.

Definition 2.5. Let Γ be a family of curves in G. The quantity

M(Γ) = inf
∫
G

ρQ dx

is called the module of the family of curves Γ. The infimum is taken over all functions
ρ ∈ F(Γ).

Here and subsequently 〈a, b〉 stands for an interval of one of the following type
(a, b), [a, b), (a, b], and [a, b]. Let F0, F1 be disjoint compacts in Ω. We say that a curve
γ : 〈a, b〉 → Ω connects F0 and F1 in Ω (terminates on F0 in Ω) if

1. γ(〈a, b〉) ∩ Fi 6= ∅, i = 0, 1, (γ(〈a, b〉) ∩ F0 6= ∅),
2. γ(t) ∈ Ω for all t ∈ (a, b).

A family of curves connecting F0 and F1 (terminating at F0) in Ω is denoted by
Γ(F0, F1; Ω) (Γ(F0; Ω)).

Remark 2.1. Let f : Ω → G be a quasiregular mapping and Γ be a family of curves
in Ω. We correlate the parametrization of the curves in Γ ⊂ Ω and in Γ? = f(Γ) ⊂ f(Ω).
Let γ? ∈ Γ? be a rectifiable curve. We introduce the length arc parameter s? in the
curve γ? ∈ Γ?. Thus s? ∈ I? = [0, l(γ?)] where l(γ?) is the length of the curve γ?.
If t is any other parameter on γ?: γ?(t) = f(γ(t)), then the function s?(t) is strictly
monotone and continuous, so the same holds for its inverse function t(s?). For the
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curve γ(t) ∈ Γ, such that f(γ(t)) = γ?, the parameter s? can be introduced by the
following way

f(γ(t(s?))) = f(γ(s?)) = γ?(s?), s? ∈ I?.

We note that if we take the length arc parameter s on γ, s ∈ I = [0, l(γ)] and the
length arc parameter s? on γ?, s? ∈ I? = [0, l(γ?)], then

(2.6) 1 =
∣∣∣dγ(s)

ds

∣∣∣
0

=
∣∣∣dγ(s?)

ds?

∣∣∣
0
·
∣∣∣ds?

ds

∣∣∣.
and

(2.7) 1 =
∣∣∣dγ?(s?)

ds?

∣∣∣
0

=
∣∣∣dγ?(s)

ds

∣∣∣
0
·
∣∣∣ ds

ds?

∣∣∣.
From now on, we use the letters s and s? to denote the length arc parameters on

curves γ ∈ Γ and γ? ∈ Γ?. The corresponding domains of s and s? are denoted by
I = [0, l(γ)] and I? = [0, l(γ?)], respectively.

We state here a Poletskĭı type lemma. Its complete proof for Rn can be found
in [27, 33] and for Carnot groups in [19, 20].

Lemma 2.1. Let f : Ω → G be a non-constant quasiregular mapping and U ⊂ Ω
be a domain, such that U ⊂ Ω. Assume Γ to be a family of curves in U such that
γ?(s?) = f(γ(s?)) is locally rectifiable and there exists a closed part γ′(s?) of γ(s?) that
is not absolutely continuous (the parameterization of Γ and f(Γ) is correlated as in
Remark 2.1). Then, M(f(Γ)) = 0

Let f : Ω → G be a continuous discrete and open mapping of a domain Ω ∈ G.
Let β : [a, b[∈ G be a curve and let x ∈ f−1(β(a)). A curve α : [a, c[→ Ω is called an
f-lifting of β starting at point x if

1) α(a) = x,
2) f ◦ α = β|[a,c[,.

We say that a curve α : [a, c[→ Ω is a maximal f -lifting of β starting at point x if
both 1), 2) and the following property hold:

3) if c < c′ < b then there does not exist a curve α′ : [a, c′[→ Ω such that
α = α′|[a,c[ and f ◦ α′ = β|[a,c′[.

Let f−1(β(a)) = {x1, . . . , xk} and m =
k∑

j=1

i(xj , f). We say that α1, . . . , αm is a

maximal essentially separate sequence of f -liftings of β starting at the points x1, . . . , xk

if
1) each αj is a maximal lifting of f ,
2) card{j : αj(a) = xl} = i(xl, f), 1 6 l 6 k,
3) card{j : αj(t) = x} 6 i(x, f) for all x ∈ Ω and all t.

Similarly, we define a maximal sequence of f -liftings terminating at x1, . . . , xk if
f : ]b, a] → G. More information about the existence and the properties of liftings can
be found in [32, 40].

The next statement is a generalization of the inequality of Väisälä. The Väisälä
inequality is an essential tool on the study of quasiregular mappings. For proof of this
inequality see [22, 33].
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Theorem 2.2. Let f : Ω → G be a nonconstant quasiregular mapping, Γ be a
family of curves in Ω, Γ? be a family in G and m be a positive integer such that the
following is true. For every locally rectifiable curve β : 〈a, b〉 → G in Γ? there exist
curves α1, . . . αm in Γ such that

1) (f ◦ αj) ⊂ β for all j = 1, . . . ,m,
2) card{j : αj(t) = x} 6 i(x, f) for all x ∈ Ω and for all t ∈ 〈a, b〉.

Then

M(Γ?) 6
KI(f)

m
M(Γ).

3. Proof of the principal results

In the statement of the theorem we use the following notations. A Carnot group is
denoted by G, Ω is a domain on G, f : Ω → G, is a quasiregular mapping. Let I and A
be closed sets in a domain Ω. By Γ?(I) we denote the family of locally rectifiable curves
in f(Ω) that admit maximal essentially separate liftings Γ(I; Ω) terminating on the set
I ⊂ Ω. Let Γ?(A, I) be a family of locally rectifiable curves in f(Ω) such, that the
maximal essentially separate liftings of these curves Γ(A, I; Ω) start on the set A ⊂ Ω
and terminate in I ⊂ Ω. We recall the statement of the principal theorem.

Theorem 1.1 Let I, A be closed disjoint sets in Ω ⊂ G, such that cap A > 0.
Then M(Γ?(I)) = 0, if and only if M(Γ?(A, I)) = 0.

Proof of Theorem 1.1. Since Γ?(A, I) ⊂ Γ?(I), we have M(Γ?(A, I)) 6 M(Γ?(I))
and the necessary part is obvious.

Let us prove that the assumption M(Γ?(A, I)) = 0 implies M(Γ?(I)) = 0. We
consider an r-neighborhood Ir of the set I and a set G, such that G = A ∩ (Ω r I2r)
and capG > 0. We fix ε ∈ (0, 1) and choose an admissible function ρ?(y) for the family
Γ?(A, I), such that

∫
f(Ω)

(ρ?(y))Q dy < ε. We denote by E, E ⊂ Ω, the set of points

where the mapping f is not P-differentiable. There exists a Borel set F of measure
zero, such that E ∪Bf ⊂ F . Let us define a function ρ(x) on Ω by the rule

(3.1) ρ(x) =
{

ρ?(f(x)) · |DHf(x)| if x ∈ Ω r (I ∪ F ),
0 if x ∈ I ∪ F.

We claim that the function ρ(x) is admissible for the family of curves Γ(A, I; Ω). Indeed,
if γ ∈ Γ(A, I; Ω) is a lifting of a curve γ? ∈ Γ?(A, I) and s ∈ I, s? ∈ I? are the arc
length parameters of curves γ and γ? respectively, then we obtain∫

γ

ρ ds =
∫
I

ρ?(f(γ(s)))|DHf(γ(s))| ds =
∫
I?

ρ?(f(γ(s?)))|DHf(γ(s?))|
∣∣ ds

ds?

∣∣ ds?

=
∫
I?

ρ?(γ?(s?))|DH(γ?(s?)|
∣∣∣dγ?

ds

∣∣∣−1

0
ds? >

∫
I?

ρ?(γ?(s?)) ds?

=
∫
γ?

ρ? ds? > 1

by (2.7) and the inequality |DH(γ?(s?)|
∣∣dγ?

ds

∣∣−1

0
> 1.
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Two subsets C
(r)
ε and D

(r)
ε of the boundary ∂Ir are considered. Denote by C

(r)
ε the

set of the points x ∈ ∂Ir for which there exists a curve α ∈ Γ(A, I; Ω) passing through
x and satisfying the condition:

∫̃
α

ρ ds < 1/2 for an arc α̃ of the curve α such that

α̃ ∈ Ω r Ir. Since the function ρ is admissible, we deduce that for any curve α that
starts at x ∈ C

(r)
ε and terminates on I we have

∫
α

ρ ds > 1/2. Thus, 2ρ is an admissible

function for Γ(C(r)
ε , I; Ω).

The subset D
(r)
ε is the complement to C

(r)
ε : D

(r)
ε = ∂Ir r C

(r)
ε . By definition of

D
(r)
ε , for any γ ∈ Γ(G, D

(r)
ε ; Ω r Ir), we get

∫
γ

ρ ds > 1/2. We deduce

M(Γ(G, D(r)
ε ; Ω r Ir)) 6 2Q

∫
ΩrIr

ρQ dx 6 2Q

∫
Ω

(
ρ?(f(x))

)Q|DHf(x)|Q dx

6 2QKO(f)
∫
Ω

(
ρ?(f(x))

)Q
J(x, f) dx(3.2)

= 2QKO(f)
∫

f(Ω)

(
ρ?

)Q
N(y, f, Ω r Ir) dy 6 2QKO(f)Nε,

where N = sup
y∈G

N(y, f, Ω r Ir).

Let us estimate the module of the family of curves Γ?(C(r)
ε , I) ⊂ Γ?(I) whose lifting

starts at C
(r)
ε and terminates at I. We denote λf (x) = min

|ξ|0=1,ξ∈V1

|DHf(x)(ξ)|0. If x

belongs to Ω r (I ∪ F ), then for a function ρ? ∈ F
(
Γ?(C(r)

ε , I)
)
, we get

(3.3) ρ?(y) = ρ?(f(x)) =
ρ(x)

|DHf(x)|
>

ρ(x)

K
1/Q
O J1/Q(x, f)

>
ρ(x)

K
1/Q
O K

1/Q
I λf (x)

from (2.2) and (2.3). It can be proved, that since mes(f(F )) = 0, we have
∫
γ?

χf(F ) ds? =

0 for γ? ∈ Γ?(C(r)
ε , I) and characteristic function χf(F ) of the set f(F ) (see [22, 39]).

Thus, ∫
γ?

ρ?(s?) ds? =
∫
I?

ρ?(γ?(s?)) ds? =
∫
I

ρ?(f(γ(s)))
∣∣ds?

ds

∣∣ ds

> K
− 1

Q

O (f)K
− 1

Q

I (f)
∫
I

ρ(γ(s))
(
λf (γ(s))

∣∣dγ(s?)
ds?

∣∣
0

)−1

ds

>
1

K
1/Q
O (f)K1/Q

I (f)

∫
γ

ρ(s) ds >
1

2K
1/Q
O (f)K1/Q

I (f)

by (3.3), (2.6), and the inequality
(
λf (γ(s))

∣∣dγ(s?)
ds?

∣∣
0

)−1
> 1.
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Finally, we deduce

(3.4) M(Γ?(C(r)
ε , I)) 6 2QKO(f)KI(f)

∫
f(Ω)

(
ρ?

)Q
dy 6 2QKO(f)KI(f)ε.

Now we choose the sequence εl = (2Q+lKO(f)KI(f)j)−1, l, j ∈ N. For the union

C
(r)
j =

∞⋃
l=1

C
(r)
εl we obtain

(3.5) M(Γ?(C(r)
j , I)) 6

∞∑
l=1

M(Γ?(C(r)
εl

, I)) 6
1
j

∞∑
l=1

1
2l

6
1
j

from (3.4) and from the subadditivity of the module of a family of curves. For the set

D
(r)
j =

∞⋂
l=1

D
(r)
εl from (3.2), we have

(3.6) M(Γ(G, D
(r)
j ; Ω r Ir)) = 0.

The estimates (3.5) and (3.6) imply that

M(Γ(G, D(r); Ω r Ir)) = 0 with D(r) =
∞⋃

j=1

D
(r)
j ,

M(Γ?(C(r), I)) = 0 with C(r) =
∞⋂

j=1

C
(r)
j ,

and
C(r) ∪D(r) = ∂Ir.

The next step of our proof is to show that M(Γ(D(r); ΩrIr)) = 0, where Γ(D(r); Ωr
Ir) is the family of curves connecting the points x ∈ Ω r Ir with the set D(r). Since
M(Γ(G, D(r); Ω r Ir)) = 0, we can choose a function ρ ∈ LQ(Ω), such that

∫
γ

ρ ds = ∞

for any curve γ ∈ Γ(G, D(r); Ω r Ir). Making use of constructions from [3, 15, 21] we
can suppose that ρ is continuous in Ω r Ir.

Now, let P be a subset of Q = Ω r (Ir ∪G) with the following property: there is a
curve γ ∈ Γ(P,G; Ω r Ir), such that

∫
γ

ρ(s) ds < ∞. We claim that P is open and close

in Q. First, we show that P is open. Let x ∈ P and B(x, δ
2 ) be a ball in Q such that

B(x, δ) ∈ Q. We choose a point ω ∈ B(x, δ
2 ) and we connect ω with x by a rectifiable

curve α. The function ρ is locally bounded, therefore
∫
α

ρ ds < ∞. Thus,∫
γ∪α

ρ ds =
∫
γ

ρ ds +
∫
α

ρ ds < ∞, γ ∈ Γ(x, G; Ω r Ir),

and we deduce that P is open.
We note that

∫
γ

ρ(s) ds = ∞ for any γ ∈ Γ(P,D(r); Ω r Ir). If it were not so,

then we could choose a curve γ̃ ∈ Γ(P,G; Ω r Ir), such that
∫̃
γ

ρ(s) ds < ∞ and get
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a contradiction with
∫

γ∪γ̃

ρ(s) ds = ∞, where the curve γ ∪ γ̃ connects G and D(r).

Finally, we have

(3.7) M(Γ(P,D(r); Ω r Ir)) = 0.

We assume that P 6= ∅ and show that P is closed in Q. Let x be a limit point
of the set P . Let us take a sufficiently small ball B(x, δ), B(x, δ) ⊂ Q, and connect x
with some point x′ ∈ B(x, δ

2 )∩P by a rectifiable curve β, that belongs to Q∩B(x, δ).
Since ρ is continuous in Q, then it is bounded in B(x, δ) and

∫
β

ρ(s) ds < ∞. The point

x′ belongs to P , hence there is a curve γ ∈ Γ(x′, G; Ω r Ir) such that
∫
γ

ρ(s) ds < ∞.

Consequently, we have
∫

γ∪β

ρ(s) ds < ∞ for the curve that connect x and G. The point

x belongs to P , it means that P is closed.
By the next step we show that the complement QrP is empty. From the contrary,

let us assume that H = Qr P is not empty. We denote by Qi connected components
of Q. Since H = QrP is open and closed, the components Qi lie either in H = QrP
or in P . If Qi ⊂ P , then M(Γ(Qi, D

(r); Ω r Ir)) = 0. If Qi ⊂ Q r P , then we can
choose a ball B0 = B(x, %) ⊂ Qi such that

∫
γ

ρ(s) ds = ∞ for any γ ∈ Γ(B0, G; Ω r Ir).

Consequently, M(Γ(B0, G; Ω r Ir) = 0.
We denote by W the set of points from Ω r Ir such that there is no rectifiable

curve joining W with B0 which does not intersect G. It is obvious, that W contains G.
This and a result by B. Fuglede [11] imply that M(Γ(B0,W ; Ω r Ir)) = 0.

The set W is closed. Really, if we choose x′ ∈ CW , then there exists a rectifiable
curve γ connecting x′ and B0. Let B(x′, ε) be a small ball, x′′ ∈ B(x′, ε

2 ). We unite
x′ and x′′ by a rectifiable curve α. Since the function ρ(x) is continuous in Ω r Ir we
obtain

∫
α

ρ(s) ds < ∞ and
∫

α∪γ

ρ(s) ds < ∞. So the set W is closed.

Let us show that M(Γ(W,QirW ; ΩrIr)) = 0. If y ∈ CW and γ ∈ Γ(y, W ; ΩrIr),
then

∫
γ

ρ(s) ds = ∞. Suppose that it is not so:
∫
γ

ρ(s) ds < ∞. We connect y and B0 by

a rectifiable curve γ′. The continuity of the function ρ implies
∫

γ′∪γ

ρ(s) ds < ∞. This

contradicts to the fact that M(Γ(B0,W ; Ω r Ir)) 6 M(Γ(B0, G; Ω r Ir)) = 0. Hence,
M(Γ(W,Qi r W ; Ω r Ir)) = 0. This implies cap W = 0, that contradicts to capG = 0.

We have shown that H = ∅ and, consequently, P = Q. Finally,

M(Γ(D(r); Ω r Ir)) = 0,

where Γ(D(r); Ω r Ir) is a family of curves joining points x ∈ Ω r Ir with D(r). We
choose a sequence rk → 0 as k →∞. Any curve γ? ∈ Γ?(I) has a maximal essentially
separate lifting α1, . . . , αj that starts on Ω r Irk

for some k. Since Ω r I is connected,
we can choose k sufficiently big, such that starting point of the lifting lies in a connected
component of Ω r Irk

with cap(A ∩ (Ω r Irk
)) > 0. This lifting intersects either the

set Crk or Drk . In the first case we have M(Γ?(C(rk), I)) = 0. In the second one
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M(Γ(D(rk); Ω r Irk
)) = 0 and Theorem 2.2 implies that

M(Γ?(D(rk))) 6
KI(f)

m
M(Γ(D(rk); Ω r Irk

)) = 0.

So M(Γ?(C(rk), I) ∪ Γ?(D(rk))) = 0. Finally, letting k →∞ we deduce

M(Γ?(I)) = 0.

2
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[26] P. Pansu, Métriques de Carnot — Carathéodory et quasiisométries des espacies symétriques de

rang un, Ann. Math. 129, (1989), 1–60.
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