SCIENTIA Series A: Mathematical Sciences, Vol. 12 (2006), 1–4 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 0716-8446 © Universidad Técnica Federico Santa María 2006

A note on \aleph_0 -spaces

Ying Ge

ABSTRACT. In this paper, we prove that a space is an \aleph_0 -space iff it is an \aleph_1 -compact space with a σ -weakly hereditarily closure-preserving strong *cs*-network. As an application of this result, we prove that a space with a nontrivial convergent sequence is an \aleph_0 -space iff it has a σ -weakly hereditarily closure-preserving strong *cs*-network.

In [5], Y. Tanaka proved a space X has a σ -hereditarily closure-preserving strong cs-network iff X is an \aleph_0 -space, or a σ -closed discrete space in which each compact subset is finite [5, Theorem A]. Takeing the implication "hereditarily closure-preserving \implies weakly hereditarily closure-preserving" into account, an interesting work is to investigate relations between \aleph_0 -spaces and spaces with σ -weakly hereditarily closure-preserving strong cs-network. In this paper, we prove that a space is an \aleph_0 -space iff it is an \aleph_1 -compact space with a σ -weakly hereditarily closure-preserving strong cs-network. As an application of this result, we prove that a space with a nontrivial convergent sequence is an \aleph_0 -space iff it has a σ -weakly hereditarily closure-preserving strong cs-network.

Throughout this paper, all spaces are assumed to be regular and T_1 . \mathbb{N} denotes the set of all natural numbers. Let X be a space and $P \subset X$. The closure of P is denoted by \overline{P} . Let \mathcal{P} be a family of subsets of X and $x \in X$. Then $\bigcup \mathcal{P}$ and $(\mathcal{P})_x$ denote the union $\bigcup \{P : P \in \mathcal{P}\}$ and the subfamily $\{P \in \mathcal{P} : x \in P\}$ of \mathcal{P} respectively.

DEFINITION 1. [1]. Let \mathcal{P} be a family of subsets of a space X.

(1) \mathcal{P} is called closure-preserving if $[]\mathcal{P}' = []{\overline{P} : P \in \mathcal{P}'}$ for each $\mathcal{P}' \subset \mathcal{P}$.

(2) \mathcal{P} is called hereditarily closure-preserving if a family $\{H(P) : P \in \mathcal{P}\}$ is closure-preserving for each $H(P) \subset P \in \mathcal{P}$.

(3) \mathcal{P} is called weakly hereditarily closure-preserving if a family $\{\{x_P\} : P \in \mathcal{P}\}$ is closure-preserving for each $x_P \in P \in \mathcal{P}$.

Obviously, each hereditarily closure-preserving family is closure-preserving and weakly hereditarily closure-preserving.

2000 Mathematics Subject Classification. Primary 54D20, 54D65 Secondary 54E20, 54E99.

This project was supported by NSFC(No.10571151).

1

Key words and phrases. \aleph_0 -space, strong cs-network, weakly here ditarily closure-preserving family, sequential space.

YING GE

DEFINITION 2. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a cover of a space X, where $\mathcal{P}_x \subset (\mathcal{P})_x$. (1) \mathcal{P} is called a strong *cs*-network of X [5], if whenever sequence $\{x_n\}$ converges to x such that $\{x_n : n \in \mathbb{N}\} \bigcup \{x\} \subset U$ with U open in X, there is $P \in \mathcal{P}$ such that $\{x_n : n \in \mathbb{N}\} \bigcup \{x\} \subset P \subset U$.

(2) \mathcal{P} is called a wcs^* -network of X [5], if whenever sequence $\{x_n\}$ converges to x such that $\{x_n : n \in \mathbb{N}\} \bigcup \{x\} \subset U$ with U open in X, there is $P \in \mathcal{P}$ and a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{x_{n_k} : k \in \mathbb{N}\} \subset P \subset U$.

(3) \mathcal{P} is called a k-network of X [4], if whenever $K \subset U$ with K compact in X and U open in X, there is a finite $\mathcal{F} \subset \mathcal{P}$ such that $K \subset \bigcup \mathcal{F} \subset U$.

DEFINITION 3. (1) A space X is called an \aleph_0 -space [3] if X has a countable k-network.

(2) A space X is called an $\aleph_1\text{-compact}$ space if each closed discrete subspace of X is countable.

REMARK 4. It is known that a space is an \aleph_0 -space iff it has a countable strong cs-network iff it has a countable wcs^* -network [5, Proposition C].

THEOREM 5. If a space X is an \aleph_1 -compact space with a σ -weakly hereditarily closure-preserving strong cs-network, then X is an \aleph_0 -space.

PROOF. Let X be an \aleph_1 -compact space with a σ -weakly hereditarily closurepreserving strong cs-network $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$, where each \mathcal{P}_n is weakly hereditarily closure-preserving.

For each $n \in \mathbb{N}$, put $D_n = \{x \in X : \mathcal{P}_n \text{ is not point-countable at } x\}$ and put $\mathcal{P}'_n = \{P - D_n : P \in \mathcal{P}_n\}.$

Claim 1. \mathcal{P}'_n is countable.

If $\mathcal{P}'_n = \{P - D_n : P \in \mathcal{P}_n\}$ is not countable, then there is an uncountable subfamily $\{P_\alpha : \alpha \in \Lambda\}$ of \mathcal{P}_n such that $P_\alpha - D_n \neq \emptyset$ for each $\alpha \in \Lambda$ and $P_\alpha - D_n \neq P_{\alpha'} - D_n$ if $\alpha \neq \alpha'$, where Λ is an uncountable index set. Take $x_\alpha \in P_\alpha - D_n$ for each $\alpha \in \Lambda$. Since \mathcal{P}_n is weakly hereditarily closure-preserving, $\{x_\alpha : \alpha \in \Lambda\}$ is a closed discrete subspace of X. Note that X is \aleph_1 -compact, $\{x_\alpha : \alpha \in \Lambda\}$ is countable. So there is an uncountable subset Λ' of Λ such that $\{x_\alpha : \alpha \in \Lambda'\} = \{x\}$ for some $x \in X$. Thus \mathcal{P}_n is not point-countable at x. This contradicts that $x \notin D_n$. So $\{P - D_n : P \in \mathcal{P}_n\}$ is countable.

Claim 2. D_n is a countable closed discrete subspace of X.

If D_n is not countable, then there is an uncountable subset $D'_n = \{y_\beta : \beta < \omega_1\}$ of D_n . Take $y_1 \in P_1$ for some $P_1 \in \mathcal{P}_n$. \mathcal{P}_n is not point-countable at y_2 , so $y_2 \in P_2$ for some $P_2 \in \mathcal{P}_n - \{P_1\}$. By transfinite induction, we can obtain a subfamily $\{P_\beta : \beta < \omega_1\}$ of \mathcal{P}_n such that $P_\beta \in \mathcal{P}_n - \{P_\gamma : \gamma < \beta\}$ and $y_\beta \in P_\beta$ for each $\beta < \omega_1$. Thus $D'_n = \{y_\beta : \beta < \omega_1\}$ is an uncountable closed discrete subspace of X because \mathcal{P}_n is weakly hereditarily closure-preserving. This contradicts \aleph_1 -compactness of X. So D_n is countable. By a similar way as in the proof of that D'_n is a closed discrete subspace of X, It is easy to prove that D_n is a closed discrete subspace of X.

Put $\mathcal{U}_n = \mathcal{P}'_n \bigcup \{\{x\} : x \in D_n\}$ for each $n \in \mathbb{N}$ and put $\mathcal{U} = \bigcup \{\mathcal{U}_n : n \in \mathbb{N}\}$. Then \mathcal{U} is countable from Claim 1 and Claim 2. By Remark 4, it suffices to prove that \mathcal{U} is a wcs^* -network of X.

Let $\{x_n\}$ be a sequence converging to x such that $\{x_n : n \in \mathbb{N}\} \bigcup \{x\} \subset U$ with U open in X. Since \mathcal{P} is a strong cs-network of X, there is $P \in \mathcal{P}_m$ for some $m \in \mathbb{N}$ such that $\{x_n : n \in \mathbb{N}\} \bigcup \{x\} \subset P \subset U$.

Case 1. Assume $x_n = x$ for infinitely many $n \in \mathbb{N}$. Then there is a subset $\{n_k : k \in \mathbb{N}\}\$ of \mathbb{N} such that $x_{n_k} = x$ for each $k \in \mathbb{N}$. If $x \in D_m$, then $\{x\} \in \mathcal{U}_m \subset \mathcal{U}$ and $\{x_{n_k} : \hat{k} \in \mathbb{N}\} = \{x\} \subset U$. If $x \notin D_m$, then $P - D_m \in \mathcal{U}$ and $\{x_{n_k} : k \in \mathbb{N}\} = \{x\} \subset P - D_m \subset U$.

Case 2. Assume $x_n \neq x$ for all but finitely many $n \in \mathbb{N}$. Then $S = \{x_n : x_n \in \mathbb{N}\}$ $n \in \mathbb{N} \bigcup \{x\}$ is infinite. Note that $S \cap D_m$ is compact in D_m , $S \cap D_m$ is finite, so $S \cap (P - D_m)$ is infinite. Thus, there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{x_{n_k}: k \in \mathbb{N}\} \subset P - D_m$. It is clear that $P - D_m \in \mathcal{U}_m \subset \mathcal{U}$ and $P - D_m \subset U$. \square

By the above two case, \mathcal{U} is a wcs^* -network of X.

Note that each \aleph_0 -space is Lindelöf and hereditarily separable, and each Lindelöf space or hereditarily separable space is \aleph_1 -compact. We have the following corollary immediately.

COROLLARY 6. A space X is an \aleph_0 -space iff X has a σ -weakly hereditarily closurepreserving strong cs-network and anyone of the following conditions holds.

- (1) X is a Lindelöf space.
- (2) X is a hereditarily separable space.
- (3) X is an \aleph_1 -compact space

THEOREM 7. Let a space X have a nontrivial convergent sequence. Then X is an \aleph_0 -space iff X has a σ -weakly hereditarily closure-preserving strong cs-network.

PROOF. We only need to prove sufficiency. Let X has a σ -weakly hereditarily closure-preserving strong cs-network $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$, where each \mathcal{P}_n is weakly hereditarily closure-preserving. By Theorem 5, it suffices to prove that X is \aleph_1 compact. If X is not \aleph_1 -compact, then there is a uncountable closed discrete subspace Y. Let $\{x_n\}$ be a nontrivial sequence converging to x. Without loss of generality, assume $x_n \neq x$ for each $n \in \mathbb{N}$ and $x_n \neq x_m$ for all $n \neq m$. Put $S = \{x_n : n \in \mathbb{N}\} \bigcup \{x\}$, then Y - S is uncountable. Let $Y - S = \{y_{\alpha} : \alpha \in \Lambda\}$, where Λ is an uncountable index set. For each $\alpha \in \Lambda$, put $U_{\alpha} = X - (Y - (S \bigcup \{y_{\alpha}\}))$, then $S \bigcup \{y_{\alpha}\} \subset U_{\alpha}$ with U_{α} open in X. There is $P_{\alpha} \in \mathcal{P}_{n_{\alpha}}$ for some $n_{\alpha} \in \mathbb{N}$ such that $S \bigcup \{y_{\alpha}\} \subset P_{\alpha} \subset U_{\alpha}$ because \mathcal{P} is a strong *cs*-network of X. Thus there is an uncountable subset Λ' of Λ and $k \in \mathbb{N}$ such that $n_{\alpha} = k$ for all $\alpha \in \Lambda'$, that is, $P_{\alpha} \in \mathcal{P}_k$ for all $\alpha \in \Lambda'$. If $\alpha \neq \beta$ and $\alpha, \beta \in \Lambda'$, then $P_{\alpha} \neq P_{\beta}$ because $y_{\alpha} \in P_{\alpha} \subset X - \{y_{\beta}\}$ and $y_{\beta} \in P_{\beta} \subset X - \{y_{\alpha}\}$. So $\{P_{\alpha} : \alpha \in \Lambda'\}(\subset \mathcal{P}_k)$ is weakly hereditarily closure-preserving. Since Λ' is uncountable and $S \subset \bigcap \{P_{\alpha} : \alpha \in \Lambda'\}$, for each $n \in \mathbb{N}$, we can take $\alpha_n \in \Lambda'$ such that $x_n \in P_{\alpha_n}$ and $\alpha_{n+1} \in \Lambda' - \{\alpha_1, \alpha_2, \cdots, \alpha_n\}$. Thus $\{x_n : n \in \mathbb{N}\}$ is a closed discrete subspace of X. This contradicts that $x \in \overline{\{x_n : n \in \mathbb{N}\}}$. So X is \aleph_1 -compact. \square

Recall a space X is sequential [2] if $U \subset X$ is open in X iff for each $x \in U$, each sequence $\{x_n\}$ converging to x, then $\{x_n : n > k\} \bigcup \{x\} \subset U$ for some $k \in \mathbb{N}$.

COROLLARY 8. If a space X is a sequential space with a σ -weakly hereditarily closure-preserving strong cs-network, then X is an \aleph_0 -space or X is a discrete space.

YING GE

PROOF. Let X be a sequential space with a σ -weakly hereditarily closure-preserving strong cs-network. If X is not a discrete space, then there is $x \in X$ such that x is not open in X. Since X is sequential, there is nontrivial sequence converging to x. By Theorem 7, X is an \aleph_0 -space.

References

- 1. D.K.Burke, R.Engelking and D.Lutzer, Hereditarily closure-preserving and metrizability, Proc. Amer. Math. Soc., 51(1975), 483-488.
- 2. S.P.Franklin, Spaces in which sequence suffice, Fund. Math., 57(1965), 107-115.
- 3. E.A.Michael, $\aleph_0\text{-spaces},$ J. Math. Mech., 15(1966), 983-1002.
- 4. P.O'Meara, On paracompactness in function spaces with the compact-open topology, Proc. Amer. Math. Soc., 29(1971), 183-189.
- 5. Y.Tanaka, Theory of k-networks, Questions and Answers in General Topology, 12(1994), 139-164.

Received 16 01 2006, revised 15 03 2006

DEPARTMENT OF MATHEMATICS, SUZHOU UNIVERSITY, SUZHOU, 215006, P.R.CHINA

E-mail address: geying@pub.sz.jsinfo.net