A SUMMATION METHOD DUE TO CARR: PART 1

GEORGE BOROS AND VICTOR H. MOLL

ABSTRACT. We present a summation method extending an idea found in
Carr’s synopsis.

1. INTRODUCTION

The collection of formulas by Carr [3] was made famous by being one of the few
texts available to S. Ramanujan in India. A complete discussion of these texts has
been given by Berndt and Rankin in [1]. In statement 2708 of [3] we find an identity
between a series and an integral, which we state as our first theorem.

Theorem 1.1. Let fi(z) be a sequence of functions and assume the expansion of
© in terms of {fx}

(1.1) pl@) = Y Arfule)

k=0
converges uniformly. For any function X (z), normalized by

b
(1.2) [ X@hi@rde = 1,

define the coefficients C by the relation

b
(1.3) Cr = /X(x)fk(x)dx

Then
00 b

(1.4) > AC, = /X(x)gp(x)dx.
k=0 @

Proof. Evaluate the integral by replacing the expansion (1.1) in (1.4). O

Note. Observe that the identity (1.4) stays the same without the normalization
(1.2). This relation expresses an identity between a series and a definite integral.

We first state three corollaries of Theorem 1.1 that will be used later. The proofs
are direct.
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Corollary 1.2. Let fi(z) = 2%, k>0 and X (z) = 2°~'e™*, > 0. Suppose
plx) = Z At
k=0
Then
(15) D A L
k=0 0
In particular, for 6 = 1, we obtain

(1.6) ElA, = h e To(x)d.
kZ:O k /0 ¥

Corollary 1.3. Let p > 0 be fixed, fi p(x) = 2F/P k>0, and X (z) = 2% e %, >
0. Suppose

plx) = Z Aga/P,
k=0

(1.7) S AL (k/p+8) = /mxﬁ—le—z(p(x)da:.
k=0 0

Corollary 1.4. Let p > 0 be fixed, fy(z) = 2%, k>0, and X (z) = 2%~ 'e=*", 8 >
0. Suppose

plx) = ZAkxk.
k=0
Then

(1.8) kZ_(JA;J(%) = p/o 2P le " p(z) da.

In this paper we provide examples of evaluations of series and definite integrals
that result from Theorem 1.1 and its corollaries. The first few sections contain
examples obtained by choosing the function ¢(x) appropriately. Section 2 considers
the exponential function, Section 3 hyperbolic functions, Section 4 the incomplete
gamma function I'(«, =), and Section 5 evaluates definite integrals involving Bessel
functions. In Section 6 we obtain identities by prescribing the coefficients of the
Taylor expansion of ¢(z). Section 7 presents an example in which the basic family
{fx} is modified.

2. THE EXPONENTIAL

Example 2.1. Let a < 1 and apply Corollary 1.2 to

(2.1) o(z) = e = Exk
k=0 "



to obtain
o0

a’_k _ > B—1_—(1—a)z _ F(ﬁ)
(2.2) 2 i LB+k) = /0 x’ e dx = L
Note. Using the Pochhammer symbol

I3+ k)
(2.3) Bk = —mm = =0B+1)(B+2) - (B+k—1),
L'(B)

the identity (2.2) becomes the binomial expansion

=~ o (BHE—1\ =dBr 1
24) Za( k )‘Z Ko (1-af

k=0 k=0

The presence of a free parameter in Example 2.1 permits differentiation of (2.1)
with respect to 5. This results in the next example.

Example 2.2. Let a < 1. Then

AL -

Ooak/
(2.5) ;}Er(gm) = oo | T

Note. Introduce the function ¢(z) = I'(x)/T'(z) (the logarithmic derivative of
I'(x)) to write (2.5) as

I'(8)

A=a)P [¥(B) — In(1 —a)].

0k
(26) Y GUB+RIE+E) =
k=0

Now let 8 — 1 and recall that v = —(1) is Euler’s constant to obtain

(2.7) S W(k)a* = afl x (y+1In(l —a)).
k=1

Corollary 2.1. The function v satisfies (k) = —y + Hg_1, where Hy = 0 and
Hp_1 =1+ 3+ + 25 is the (k — 1)—th harmonic number.

Proof. Compare the coefficients of a* on both sides of (2.7). O

Example 2.3. Apply Corollary 1.4 to the expansion

x  _k

(2.8) plx) = e = %xk
k=0
to produce
S a’k k+ﬁ > —1_azx—zx?
(2.9) ZHF(T) = p/O P 1e dz.
k=0

Special case: For g =1 and p = 2 we obtain

> —z?+ax _ 1 S k+1 ﬁ
(2.10) /0 e de = 2]§r<—2 ok
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The integral can be evaluated in terms of the error functz’on

(2.11) erf(x) := \/_/

yielding

(2.12) ir(%)a]ﬂ—? - ﬁeaz/4<1+erf(g)).
k=0

Note. The right hand side is

© 2 ) a2k+1
VT Zz?jj! x Z ! 2R (2k+ 1) )

J=0

2n+1

k a
G5y z{zk.n_ o ) T

n=0

where we have separated the odd and even powers. Then (2.12) follows from the
identities

Rk L 22|
Pk +1/2) = g and Zk'n— NEk+D)  @nt )l

Special case: §=7p gives

(2.13) Z L(k/p) = p2/ P et gt
0

k= 1
00 1/
p__
= p/ e Tdv.
0

We now express the series in (2.13) as a finite sum of hypergeometric terms. For
p € Nwe write k=np+j withn=20,1,--- and 1 <75 <p—1, so that

P . o0 n . o0
(7] a"? J 1/p_
2.14 a’T (-) S (—) = p/ e "y,
(214) ; p ,;J(npﬂ—l)! P/ 0

Now define

(2.15) P = {Hj 247 .. p_lﬂ}
pp 7 p

The inner sum in (2.14) can be identified as a hypergeometric series and we obtain

i [T %iﬁm/m dea e (2)]

=1

Example 2.4. Applying Corollary 1.2 to the function

(2.17) e = iﬂxki"
' - k!
k=0
yields
(2.18) / Plemm gy = (B + jp).
0 .



Special case: § =1 gives
[o%¢) o -1 i
(2.19) / ey = Z( .,) (jp)!
0 =

for 0 < p < 1. The specific case p = 1/2 results in

(2.20) ; (_j—ll)j(p/Q)! = 1-— %61/4ﬁ+ %el/‘lﬁ erf (1/2).

3. HYPERBOLIC FUNCTIONS

In this section we explore the consequences of Theorem 1.1 on the expansions

(3.1) mhbe = ST e

: sinh bx = jz::o (2j+1)!$

and

(3.2) cosh bx = i (gix%.
= (2))!

Example 3.1. Corollary 1.2 applied to the expansion (3.1) yields

oo o p2itl
671 —x . _ .
(3.3) /0 2”7 e ¥ sinh brdx = jz:% 2 1)!F(2J +1+0).

This also follows directly from (3.1).

Special cases: § =1 gives

(3.4) /0 e *sinh bxdx = jZOb?Hl =@

a result from elementary calculus.

e 3 =1/2 gives

) < 2+l
-z, —1/2 _ .
(3.5) / e "z sinh bxdr = 27(2j+1)!F(2] +3/2).
0 =0
Evaluating the integral and letting b = 4./c yields the classical evaluation
(45 + 1) , 2 1 1
3.6 ) d o= — — .
(36) ;(%H \/El\/l—zl\/é V1+4e
Example 3.2. Apply Corollary 1.2 to the function
(37) sinh b\/x _ i b.2j x
by\/x P (25 + 1)!
to obtain
* g1, SinhbyE =T+ 8)
3.8 p-1,—e SUOVE g ~ T P2
(38) /0 A 2 2j + 1)

Jj=0
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so that
> I =T
(3.9) / 2072/ sinhtdt = Sy Y +ﬂ)b 20+8),
0 23 (27 +1)!
Special case: § = 1 produces
* e J! ;

1 P sinhtdt = =y —L——p20tD),
(3.10) /0 e s 2;0 2j + 1)
Evaluating the integral and replacing b/2 by b gives

= jlptt b2
(3.11) Z G - 2v/me’ erf(b).

Jj=0

Example 3.3. Apply Corollary 1.2 to

_ ) _ o0 L .
(3.12) o(z) = +xsinhyx= ];:1 28
to produce
® 1/ g T(B+k)
B-1/2 —x _ LB+k)
(3.13) /0 x e~ " sinh /z dz ;:1 TR

Mathematica evaluates both sides of (3.13) as

(3.14) T(1+8) x 1FA[1+3,3; 1.
The special case § =1 yields
— kk! 1 1
1 — = =2 ! f(1/2) | .
(3.15) ;(%)! 8< + 3ed/mwerf(1/ ))

4. THE INCOMPLETE GAMMA FUNCTION

The incomplete gamma function, defined by

(4.1) Na,z) = / ettt at,

admits the expansion

(4.2) P(a,2) = D)+ Z Lo
' ’ N — nl(a+ n)

Apply Corollary 1.2 to the function

o, T) — 6] e _1\n+1
(4.3) Gaolz) = Lo, z) — I( ):Z( 1t

"
a |
x nl(a+n)

to obtain

1—r = k+1 ﬂ""k
(4.4) /O 2P Le™ G ( Z k,afk) ).




Now simplify the integral and let ¢ = 8 — a to produce

P B (=) T (e + a + k)
/0 e TNay,z)de = T(a)l(c)+ kZ:O EICEYS)
(4.5)
The special case ¢ = 1 yields
o0 (=1 (k

(4.6) / e "T'a,z)dx = Z (=) ' (k+ a),

0 = k!
and the further specialization a = 0 gives
(4.7) / e T'(0,z)der = In2.

0
Lemma 4.1.
Tett—1
(4.8) ; dt = —vy—Ilnz—T(0,z)
0

Proof. We have

T o=t _q 11_ —t 11_ —t
/e dt = —/ ¢ dt—/ ° |,
0 3 0 t © t

1 —t oo —t
1 —
v = / c dt—/ € at,
x 7t_1 00 1dt 1 _—t
/ ¢ dt —7—/ e*ttdt+/ ——/ C

0 t 1 x t x t

0o -t
= —’y—lna}—/ ert.

Now apply Corollary 1.2 to the function

Tet—1 2 (—1)kah
4. = — AN
(4.9) f@) = [ >
to produce

— (DB + k)
K k!

and using

we obtain

= —/ 2?7 te ™ [y + Inz +T(0,z)] dx
k=1 0

= (B -T'(B) - /000 2P~ 1e (0, z) d.

The case 5 = 1 recovers (4.7).

Reversing the order of integration in (4.7) yields

[e’) 1_ —t
(4.10) / et~ it = 2,
o t
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which can be written as

1 —
411 L=V = o2
(
o Inw

Lemma 4.2.

et -1
(4.12) / T nd = ¢2)

0

Proof. Exchanging the order of integration gives

00 715_1 0o _—g 0o _—g T t_l
/ ¢ / £ dr = / e—/ C  dtde
0 3 P o T Jo t

oo k—

/0 <’ kzzl Rl
€(2).

1
dxr

Example 4.1. The expansion of I'(«, z) yields the identity

= (—1)kakak
E — -y —=T(0,az) —Ina — Inz,

|
— kk!

and applying Corollary 1.2 gives the Laplace transform of T'(0, ¢):

e In(1
(4.13) / =00, ar = BIES)
0 S
Example 4.2. The function
Tl—t—et
(4.14) filx) = /0 Tdt

admits the expansion

B & (_nk—lxk
h) = ; k(k+ 1)

Corollary 1.2 and the usual argument produces

o0 1 _ _ —t
(4.15) / e—t(tize) dt = 2In2-1.
0 t
Lemma 4.3. Let H, =1+1/2+ ---+ 1/n be the harmonic number. Then
— H; _ I
(4.16) > T Pk+5) = 5
k=1
for -1 < 8 <0.
Proof. Corollary 1.2 applied to the function
Tl —et Ny
(4.17) faolz) = ef/ C ar=N Thgk
0 t — k!



yields, after reversing the order of integration,

oo

Hy _ L [Tl
(4.18) ;k!l"(k—kﬁ) = ﬂ/o th——adt.

The last integral can be evaluated by integration by parts to obtain the result.

5. BESSEL FUNCTIONS

The Bessel function of order n is defined by

o x2j+n
Example 5.1.
(5.2) / P e, (2)de = M
0 = 27 A )t

Proof. The expansion of the Bessel function I,,(z) shows that
1
and Ay = 0 otherwise. The identity (5.2) then follows from Corollary 1.2.

(5.3) Ay, if k=2j+n

Special case: n = 0 yields

(5.4) /000 xﬁflefwlo(x)dx = i 71—‘(;;—;'?)
§=0
Example 5.2. Let a > 0. Then
(5.5) /Ooo 2Pl (2v/az) de = 22—;F(6+k).
Proof. The Taylor coeflicients of the function
(56) o0 = L ey
k=0

are Ay = a*/k!2. The evaluation (5.5) now follows from Corollary 1.2.

Note. This integral is similar to the evaluation

® e T2+ p/2)(ap/2)”
/0 Jy(at)e thTrdt = ST +1) X

a2
exp <_4_p2) 1Ry (v/2 = p/2 4 10+ 1;6° [4p®)

that can be found in [6], page 394, formula (3).

Special case: § =1 gives

(5.7) /Ooefwfo(%/ﬂ)dx = e

0

O
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This identity can also be written as
(5.8) / xe_r2/4alo(m) de = 2ae.
0

The proof of the next theorem is outlined in the way we obtained it.

Theorem 5.1. Let L,(z) be the Laguerre polynomial of order n. Then

(5.9) /000 x2”+1e*$2/4“1'0(x) de = 22Tl plet L, (—a).
Step 1. Differentiating (5.8) with respect to a produces

(5.10) /OO x?’e_zz/“fo(x) dr = 8a*(1+a)e.

Step 2. There exists(; polynomial P,, such that

(5.11) /00 3)2717167902/4“]0(%) dr = e*Py(a).
Moreover, P, satisﬁesothe recurrence

(5.12) Pusi(a) = 4a?(Pl(a) + Po(a))

with initial value P;(a) = 2a.

Proof. The recurrence (5.12) follows directly by an induction argument on the pro-
posed form (5.11). O

Step 3. Motivated by the first few values of P, we introduce a new sequence of
polynomials.

Define Q,(a) = 2= Va="P,(a). Then Q,(a) is a polynomial in a of degree
n — 1 that satisfies

(513) Qn+1(a
Qi(a

~—

a@Qy,(a) + (a+n)Qn(a),
= 1.

~—

Proof. The recurrence (5.13) follows directly from (5.12) and the definition of
Qn(a). The fact that @, (a) is a polynomial is a direct consequence of this re-
currence.
(Il

Step 4. We now obtain a closed form for the coefficients of Q,,(a). Write

n—1
(5.14) Qula) = > gjla)d.

j=0
The recurrence for @, yields
(5.15) @o(n+1) = ng(n),
(5.16) g(n+1) = (n+j)g(n)+q¢-1(n), 1<j<n-—1,
(517 ga(n+1) = gualn).

We proceed to solve this system.
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Observe that Q1(a) = 1, so that go(1) = 1 and thus (5.17) yields ¢,—1(n) = 1.
Now j =n — 1 in (5.16) produces

(5.18) Gn-1(n+1)— gu_2(n) = 2n-1,
and summing from 2 to n and using ¢o(2) = 1 gives
(5.19) Gn2(n) = (n—1)>2

Proceeding along the same lines we obtain

tos(n) = 501027,

Gnealn) = o= 17200 — 22— 32

Step 5. The coefficients ¢;(n) are given by
n—1\2
(5.20) w) = -i-0t (")

Proof. The proposed formula satisfies the same recursion as ¢;(n) with the same
initial conditions.

O

Step 6. We identify the polynomial @, (a) in terms of the Laguerre polynomial
L,(z). Indeed,

(5.21) Qn(@) = (n—1)Lp_1(~a).

Proof. The expression for the coefficients ¢;(n) yields

(5.22) Qula) = nfm—l—j)! (”fl)gaﬂ',

=0 J
and this is identified with the Laguerre polynomial in [5], 23 : 6 : 1. O

This completes the proof of Theorem 5.1.

Note. The series in (5.5) is

© kK
a
(5.23) D pl(B+k) = T 1k 15a]
k=0
The special case § = n + 1 produces
(5.24) / x2"+167w2/4a10(x)dx = 27"t inl  Fi[n+1,1;4a).
0

We thus have
(5.25) 1Filn+1,1;a] = e"Lo(—a).
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Example 5.3. The product of two Bessel functions admits the expansion

(—DF(n+k+ 1) \ 2k
—~ KT(k+1+n—v)(v+k+1) (E) ’

Ju (@) Tn—r(x)

(5.26)

and Corollary 1.2 yields the identity

/ 2P re " g, (x) Ty (z)d =
0

Z (=1)*T(n + 2k + 1)I'(k + 3)
ET(n+k+1)0(k+1+n—v)l(v+k+1)22ktn"

Special case: v = 0 produces

> . o (=D)FT'(n + 2k + 1)I(k + B)
/0 $ JO( ) Z |21—\2 Tl+k+1)22k+n )

and further specialization to n = 0 yields
* -1 o~ (—1)F(2k)!
(5.27) /0 2P~ te " JE(x)dx = Z Wl—‘(/ﬂ + B).
k=0
Special case: § =1 yields

o s —1)k n+ 2k
(5.28) /0 e "Jo(z)Jn(z)dr = %m( _; ),

and n = 0 gives

(5.29) /OOO e IR (x i ( )

k=0

Note. The identity (5.29) is a special case of a formula of Gegenbauer,
(5.30) /Oo e 20 J2(br)dr = ! K ( b )

0 0 a2+ \VaZ+b?2)’
that can be found on page 391 of [6], formula (4).

Special case: §=n+ 1 gives

(') oo k n
(5.31) /O P (@) u(@)de = Y 2%2 - ( *];2’“)

k=0

6. PRESCRIBING THE COEFFICIENTS A,

In this section we prescribe the coefficients A,, in the basic identity (1.1). This
is equivalent to prescribing the function ¢.
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Example 6.1. Take 8 =1, Ag =0, and Ay = 1/T(2k) for kK > 1. Then

(6.1) p(x) = Vwsinh Va,
and Corollary 1.2 produces the identity
e B_1/2 . T(B+k)
z,.B—1/2 _
(6.2) /0 e 2PV 2 sinh(y/x)de = kZ:O T(2k)

given in Example 3.2.

Example 6.2. In this example we take Ay = I'(k)/T'(2k), so that

iw = 2P(ﬁ)+225+2ﬁ/00 *9¢=5 erf(t) dr.
0

P I (2k)
(6.3)
The integral can be evaluated by Mathematica as
1+ p3) 1 3. 1
g 2P [ 14055

Special case: § =1 yields

= I'(k
olz) = Z%xk

k=0
= 24 Vrz e terf(VI/2).
Corollary 1.2 then gives
< (1 +k)T(k)
x x/4 = —_—
/0 e (2 + /7 xe erf(\/E/Z)) dx ]; TR
This series can be evaluated by Mathematica as
I 1 2
. = —-— = —(1 .
(6.4) Xy = w8V
k=0 \k

An elementary evaluation of this series is described in [2], exercise 16.d, page 384.
We conclude that

*° 18 + 437
—3z/4 —
/0 e Vzerf(y/z/2)dx RN

7. THE ARCTANGENT FAMILY

In this section we consider the family

20222
(7.1) fe(z) = tan™! 2 k>0,0>0,
with fo(z) = /2 and X (z) = 4x /7. The coeflicients C}, are given by
4 [ 0%2?
Cr = ;/0 xtan™! ;26 dzx

|
|

=+

o
I

——In (1+46/k*).
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Example 7.1. Take Ao = 0 and Ax = 1 for all £ > 1 so that

22
o(z) = Ztan ! =
k=1
_m . tanh 7l
4 tan wlz
Theorem 1.1 then gives
=2 202 k2 4 (Y (= tanh w6z
ZtanT! S — = In(1+40/kY) = —/ — —tan" ! — ) da.
;W M T o2 n (1+40%/k%) 7 Jo T aner )Y
(7.2)
Using the evaluation [4], p 578,
= 20?2 0 tanh 76
7. tan ™' = = —tan"!
(73) ]; R g < tan 76 ) ’
we obtain
1 oo
tanh w0z 1 tanh 76 1
tan! ( ——— ) dz = —tan ' | -—=- — ) kI (14 46%/kY).
/0an (tanw@x) ’ g <tan7r9>+892kz_; n (1+46°/k%)
(7.4)
We now provide an evaluation of the series in (7.4) that yields
1
_4 { tanh 7wz 1. _, (tanh 76 g(0)
7.5 tan™! ( ——— ) de = =tan”! cAON
(75) /Ox an <tan7rt93:) v g <tan7rt9)+892
where
4763
g(0) = WTz - L:;)) + 2i6? (log[1 — u] — log[1 — v])
T
0
+ —{(1 —4)PolyLog[2,u] — (1 + ¢) PolyLog[2, v]}
T
1
+ 3.2 (PolyLog[3, u] + PolyLog|3, v])
and
= e("2420m0 o — p(2420)m0
Step 1:
(7.6) > K In (14 46%/k*) Z 22194%( —2)
k=1 j=1
Proof. Use the expansion
s Y —122i9%
4 /7.4
(7.7) In(1+46%/k") = Zl ]W
J:

and reverse the order of summation. O



The identity (7.4) becomes

1 o0 k—192k pak
_; (tanh 7éz _ 1, (tanh 70 1 (—=1)"—12°%9
/0 an ( tan mhx doe = 2 tan tan w6 * 8672 ; k

(7.8)

Step 2: Introduce the function

(7.9) flo) = Y (i —2) (=),
j=1
so that
t oo .
(7.10) f(x)de = Z(—l)HC(‘“, 2y
0 i=1 J
The result of Step 1 then becomes
o0 404
> k(1446 /kY) = f(z) de.
k=1 0

Step 3:

f(ﬂf) = 74, 0
;k‘l—f—x

Proof. We have

)

o0 o0 —r jfl
(7.11) flx) = ZZ(HJ)_Q

k=1j=1

and the sum in j is a geometric series.

Step 4:
S V20 2,3
4ky
> K In (1446 /kY) = / S o dy
k=1 o ok ty
Step 5:
- V20 dy [V dy
Z k?In (1+40%/k*) = / wygcoth(ww)g + / WySCOth(ﬂ'Z)7
k=1 0 0

where w = e™/4y and z = e~/ 4y.

Proof. Observe that

> 4/€2y3 > y3 > y3
7.12 — = ,
(7.12) k4t k;w Rt k;w k2 4 22

and now use the partial fraction expansion of hyperbolic cotangent.

15

C(4k —2).
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Step 6: Direct symbolic evaluation of the integrals in Step 5 yields

> K In (1446 /kY) = ”Toz - i:’) + 2i6? (log[1 — u] — log[1 — v])
T
k=1
0
+ —{(1 —1)PolyLog[2,u] — (1 + ¢) PolyLog[2, v]}
T
1
+ 7.2 (PolyLog[3, u] + PolyLog[3, v]),
where

w= 6(72+2i)ﬂ'9 and ©= 6(2+2i)ﬂ-9.

Special case: § =1 gives

= 4 2 1
> K In(1+4/k) = % —In5 + =PolyLog[2, e~ *"] + = (PolyLog[3,e~>"] — ((3)),
™ Vs
k=1
so that
1
tanh rx 57  Inb 1

1 -1 dr = -— — — + —PolyL e

(7.13) /Oa:tan <tan7rx> x 3 g + g Poly 0g[2,e™ "]

+ # (PolyLog[3,e "] — ¢(3)) .

Note: Differentiating (7.8) with respect to 6 yields

(7.14)
/1 , sin(2mz6) — sinh(2726) g - L sin(2r0) — sinh(2x0) 20 i":
0 * cos(2mxd) — cosh(2mz0) T 2 cos(2m0) — cosh(2 T 1694
2 4.4
+ 47T03kz:1k In (1 +46*/k*) .

The first sum can be evaluated directly by differentiating (7.3) with respect to 6:

o0 k2 7 sin(270) — sinh(270)
(7.15) ; L1462 40 " cos(2n0) — cosh(2n0)’

The second sum is evaluated in Step 6.

Note. This paper was started about five years ago. The death of George Boros
in 2003 postponed its submission. He was very proud of our collaboration with
Revista Scientia. It is a pleasure to have it published here.
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