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Numerical Method for a transport equation perturbed by
dispersive terms of 3rd and 5th order

Mauricio SepúlvedaA and Octavio Paulo Vera VillagránB

Abstract. We are concerned with the initial-boundary-value problem associated
to the Korteweg - de Vries - Kawahara (KdVK) equation, which is a transport
equation perturbed by dispersive terms of 3rd and 5th order. The (KdVK) equa-
tion appears in several fluid dynamics problems. We obtain local smoothing effects
that are uniform with respect to the size of the interval. We also propose a simple
finite-difference scheme for the problem and prove its stability. Finally, we give
some numerical examples.

1. Introduction

We study the following equation of Korteweg-de Vries-Kawahara type (KdV K)
in a bounded subdomain of R2

(1.1)





ut + η uxxxxx + uxxx + uux + ux = 0, x ∈ [0, L], t ∈ [0, T ],
u(0, t) = g1(t), ux(0, t) = g2(t), t ∈ [0, T [,
u(L, t) = 0, ux(L, t) = 0, uxx(L, t) = 0, t ∈ [0, T [,
u(x, 0) = u0(x),

where L > 0, T ∈]0, ∞[ and η ∈ R is a constant. The above equation is a particular
case of the Benney-Lin equation derived by Benney [1] and later by Lin [8, 9].

(1.2)





ut + η uxxxxx + β (uxxxx + uxx) + uxxx + uux + ux = 0, x ∈ [0, L],
u(0, t) = g1(t), ux(0, t) = g2(t), t ∈ [0, T [,
u(L, t) = 0, ux(L, t) = 0, uxx(L, t) = 0, t ∈ [0, T [,
u(x, 0) = u0(x)

where L > 0, T ∈]0, ∞[ and η ∈ R is a constant (η < 0 and β > 0). It describes
the evolution of small but finite amplitude long waves in various problems in fluid
dynamics. This also can be seen as a hybrid of the well known fifth order Korteweg-de
Vries(KdV) equation or Kawahara equation. For comprehensive descriptions of results
pertaining to (1.1), the reader may consult the review articles [2, 10] and references
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therein.

2. Results of Existence and Uniqueness

We introduce the spaces IE and IH defined by

IE := {f ∈ L1(0, T ;L2((1 + x2)dx)),
√

t f ∈ L2(0, T ;L2((1 + x2)dx))},
||f ||IE := ||f ||L1(0, T ;L2((1+x2)dx) + ||

√
t f ||L2(0, T ;L2((1+x2)dx),

where ||u||L2((1+x2)dx) =
√∫ L

0
u(x)2 (1 + x2) dx. Let T > 0. We define

IHT := {u ∈ C([0, T ]; L2((1 + x2)dx)), ux ∈ C([0, T ]; L2((1 + x)dx)),√
t ux ∈ L2([0, T ]; L2((1 + x)dx)),√
t uxx ∈ L2([0, T ]; L2(0, L)),

√
t uxxx ∈ L2([0, T ]; L2(0, L))},

||u||IH := ||u||L∞(0, T ;L2((1+x2)dx)) + ||ux||L2(0, T ;L2((1+x)dx))

+||
√

t ux||L∞(0, T ;L2((1+x)dx)) + ||
√

t uxx||L2(0, T ;L2(0, L))

+||
√

t uxxx||L2(0, T ;L2(0, L)).

Following the proofs in [7] it is possible to find similar (or better) estimates for the
equations (1.1) and (1.2) obtaining the following result for both equations

Theorem 2.1. (Existence and Uniqueness) Let η 6 0, u0 ∈ L2((1 + x2)dx),
g ∈ H1

loc(R+) and 0 < L < +∞. Then there exists a unique weak maximal solution
of (KdVK) defined over [0, TL]. Moreover, there exists Tmin > 0 independent of L,
depending only on ||u0||L2(0, L) and ||g||H1(0, T ) such that TL > Tmin. The solution u
depends continuously on u0 and g in the following sense: Let a sequence un

0 → u0 in
L2((1+x2)dx), let a sequence gn → g in H1

loc(R+) and denote by un the solution with
data (un

0 , gn) and Tn
L its existence time. Then

lim inf
n→+∞

Tn
L > TL

and for all t < TL, un exists on [0, T ] if n is large enough and un → u in IHT .

Remark 2.1. We consider the (KdVK) equation in a quarter plane




ut + η uxxxxx + uxxx + uux + ux = 0, x > 0, t > 0,
u(0, t) = g(t), t > 0
u(x, 0) = u0(x), x > 0.

In this context, we are interested in the following result: Consider a family of ini-
tial values uL

0 ∈ L2([0, L]) such that sup L→∞
∫ L

0
|uL

0 (x)|2 (1 + x2) dx < ∞ and such
that uL

0 → u0 in L2
loc(R+) strongly. Then, for all T > 0, if L is large enough, uL

the solution of (KdVK) with initial data uL
0 is defined on [0, T ] and uL → u in

Lp(0, T ; L2
loc(R+)) strongly for all 1 6 p < +∞, where u is a solution of (KdVK)QP

with initial value u0.
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In order to prove this question, we need similar results for Korteweg-de Vries-
Kawahara equation as those obtained by J. Bona and R. Winther [3, 4, 5] for the
Korteweg-de Vries equation.

In the next section we present numerical results for regular solutions of the KdV-
Kawahara equation (1.1) describing a numerical scheme for the more general case
(1.2).

3. Numerical Methods

We consider finite differences based on the unconditionally stable schemes de-
scribed in [6, 7].
Description of the scheme. We note by vn

i the approximate value of u(i∆x, n∆t),
solution of the nonlinear problem (BL), where ∆x is the space-step, and ∆t is the
time-step, for i = 0, . . . , N , and n = 0, . . . , M . Define the discrete space

XN = {u = (u0, u1, . . . , uN ) ∈ RN+1 | u0 = u1 = 0 and uN = uN−1 = uN−2 = 0}
and (D+u)i = ui+1 − ui

∆x and (D−u)i = ui − ui−1

∆x the classical difference operators.
In order to obtain a positive matrix we have to chose a particular discretization. The
numerical scheme for the nonlinear problem (1.2) reads as follows :

(3.1)
vn+1 − vn

∆t
+ Avn+1 +

α

2
D−[vn]2 = 0,

where A = ηD+D+D+D−D− + β (D−D+D+D− + D+D−) + D+D+D− + 1
2(D+ +

D−), with α = 1 for the nonlinear case, and α = 0 for the linear case. We consider
the linear operators D+ and D− as matrices of size (N +1)× (N +1) and we note the
following internal product (z, w) =

∑N
1=0 ziwi and (z, w)x = (z, xw) =

∑N
1=0 i∆xziwi,

and the norms in RN+1 : |z| =
√

(z, z) and |z|x =
√

(z, z)x. Then, we have the
following lemma :

Lemma 3.1. For all z, w ∈ RN+1, we have

(D+z, w) = zNwN − z0w0 − (z, D−w),(3.2)

(D+z, z) =
1
2

(
z2
N

∆x
− z2

0

∆x
−∆x|D+z|2

)
,(3.3)

(D+z, w)x = NzNwN − (z,D−w)x + ∆x(z, D−w)− (z, w),(3.4)

(D+z, z)x =
1
2

(
Nz2

N

∆x
−∆x|D+z|2x − |z|2

)
.(3.5)

Proof. Equations (3.2) and (3.4) are result of summing by parts. Equation (3.3)
is result of using (a − b)a = 1

2 (a2 − b2) + 1
2 (a − b)2. with zi = a and zi+1 = b, and

summing over i = 0, . . . , N . The last equality (3.5) is result of the same identity with
zi = a and zi+1 = b, multiplying by i∆x and summing over i = 0, . . . , N . ¤

In order to obtain estimates for the solution of the numerical scheme for the linear
case, we have the following lemmas describing the quadratic forms associated to the
different matrices.
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Lemma 3.2. For all u ∈ XN , we have
1
2
((D+ + D−)u, u) = 0,(3.6)

(D+D−u, u) > −1
2

(|D+D−u|2 + |u|2) ,(3.7)

(D+D+D−u, u) =
∆x

2
|D+D−u|2,(3.8)

(D−D+D+D−u, u) = |D+D−u|2,(3.9)

(D+D+D+D−D−u, u) = − 1
2∆x

[
D−D−u

]2
0
− ∆x

2
|D+D−D−u|2.(3.10)

Remark 3.1. Since u ∈ XN , the first term in the right-hand side of (3.10) is
given by 1

∆x [D−D−u]20 = (∆x)u2
2.

Proof. The matrix 1
2(D++D−) is clearly antisymmetric and we have (3.6). The

inequality (3.7) is a consequence of 2ab 6 a2+b2. Using (3.3) with z = D−u we obtain
(3.8), and using the same identity with z = D−D−u we obtain (3.10). Finally, (3.9)
results of summing by parts. ¤

Corollary 3.1. If η 6 0, β > 0 and ∆t is enough small, then I +∆tA is positive
definite, and for any un ∈ XN there exists a unique solution un+1 of (3.1).

Proof. From Lemma 3.2 we have for all u ∈ XN with u 6= 0,

((I + ∆tA)u, u) >
(

1− β∆t

2

)
|u|2 +

∆t (β + ∆x)
2

|D+D−u|2

−η∆x∆t

2
|D+D−D−u|2 − η∆t

2∆x

[
D−D−u

]2
0

> 0,(3.11)

when β∆t < 2 and η 6 0. ¤

The following estimate shows that the numerical scheme (3.1) with α = 0 is l2-
stable and unconditionally stable.

Proposition 3.1. Let η 6 0 and β > 0. For any vn ∈ XN satisfying the linear
scheme (3.1) with α = 0, there exists C(T ) > 0 such that |vn| 6 C(T )|v0|. Moreover,
if β > 0 (η can be zero) we have

(
n∑

k=1

∆t|D+D−vk|2
) 1

2

6 C(T )|v0|.

Proof. Multiplying the numerical scheme (3.1) by vn+1 we obtain

(3.12) |vn+1|2 + ∆t(Avn+1, vn+1) = (vn+1, vn),

and then, using the same identity of the proof of the Lemma 3.1 with a = vk+1 and
b = vk and summing for k = 0, . . . , n− 1 we have

|vn|2 +
n−1∑

k=0

|vk+1 − vk|2 + 2∆t

n∑

k=1

(Avk, vk) = |v0|2.
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From (3.11) this last equality becomes

|vn|2 + ∆t

n−1∑

k=0

∆t

∣∣∣∣
vk+1 − vk

∆t

∣∣∣∣
2

+ (β + ∆x)
n∑

k=1

∆t|D+D−vk|2

− η∆x

n∑

k=1

∆t|D+D−D−vk|2 − η

∆x

n∑

k=1

∆t
[
D−D−vk

]2
0

6 |v0|2 + β

n∑

k=1

∆t|vk|2.(3.13)

On the other hand, from (3.11) and (3.12) we deduce for k = 0, . . . , N − 1

|vk| 6
(

1− β∆t

2

)−k

|v0| 6 e2T/β |v0|,

with T = n∆t. Replacing this inequality in (3.13) we deduce

|vn|2 + ∆t

n−1∑

k=0

∆t

∣∣∣∣
vk+1 − vk

∆t

∣∣∣∣
2

+ (β + ∆x)
n∑

k=1

∆t|D+D−vk|2

− η∆x

n∑

k=1

∆t|D+D−D−vk|2 − η

∆x

n∑

k=1

∆t
[
D−D−vk

]2
0

6
(
1 + βTe4T/β

)
|v0|2.

¤

In order to obtain the unconditional stability for the nonlinear version of the
scheme, we will find a discrete estimate that is equivalent to that of (3.28) (see Propo-
sition 3.1). Let us denote by x the sequence xi = i∆x. We have :

Lemma 3.3. For all u ∈ XN , we have

1
2
((D+ + D−)u, xu) =

1
4
∆x2|D+u|2 − 1

2
|u|2,

(D+D−u, xu) = −|D−u|2x −
∆x

2
|D+u|2,

(D+D+D−u, xu) =
3
2
|D−u|2 +

∆x

2
|D+D−u|2x −

∆x2

2
|D+D−u|2,

(D−D+D+D−u, xu) = |D+D−u|2x,

(D+D+D+D−D−u, xu) = −5
2
|D−D−u|2 − ∆x

2
|D+D−D−u|2x

+ ∆x2|D+D−D−u|2 − 1
2

[
D−D−u

]2
0
,

where (xu)i = i∆xui.
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Proof. Using (3.2), (3.3) and (3.4) we have

((D+ + D−)u, xu) = (D−u, u)x − (u,D−u)x + ∆x(u,D−u)− |u|2

= −∆x(D+u, u)− |u|2 =
∆x2

2
|D+u|2 − |u|2,

and then we have the first identity of the Lemma. Following the same idea and
applying the identities of Lemma 3.1 is easy to prove the rest of the identities. ¤

Proposition 3.2. Let η 6 0 and β > 0. For any vn ∈ XN satisfying the linear
scheme (3.1) with α = 0, there exists C(T ) > 0 such that |vn|x 6 C(T )|v0|x and

(
n∑

k=1

∆t|D−vk|2
) 1

2

6 C(T )|v0|,
(

n∑

k=1

∆t|D+D−vk|2
) 1

2

6 C(T )|v0|, if η < 0 (β can be zero),

(
n∑

k=1

∆t|D+D−vk|2x
) 1

2

6 C(T )|v0|, if β > 0 (η can be zero).

Proof. We multiply the numerical scheme (3.1) with α = 0 by xvn+1. Then,
applying Lemma 3.3, and the same identity of the proof of Lemma 3.1 with a =√

xvk+1 and b =
√

xvk, we deduce

|vn|2x + ∆t

n−1∑

k=0

∆t

∣∣∣∣
vk+1 − vk

∆t

∣∣∣∣
2

x

+
(

3 +
∆x2

2

) n∑

k=1

∆t|D−vk|2

+ (2β + ∆x)
n∑

k=1

∆t|D+D−vk|2x −
(
5η + ∆x2

) n∑

k=1

∆t|D+D−vk|2

− η∆x

n∑

k=1

∆t|D+D−D−vk|2x + 2η∆x2
n∑

k=1

∆t|D+D−D−vk|2

− η
[
D−D−vk

]2
0

= |v0|2x +
n∑

k=1

∆t
(|vk|2 + 2β|D−vk|2) .

Noting that |D+D−vk|2x − ∆x|D+D−vk|2 =
∑N−1

i=1
(i−1)
∆x (vk

i+1 − 2vk
i + vk

i−1)
2 > 0,

and |D+D−D−vk|2x − 2∆x|D+D−vk|2 + 1
∆x

[
D−D−vk

]2
0

=
∑N−1

i=2
(i−2)
∆x (vk

i+1 − 3vk
i +

3vk
i−1 − vk

i−2)
2 > 0, and replacing this inequality, we deduce

|vn|2x + ∆t

n−1∑

k=0

∆t

∣∣∣∣
vk+1 − vk

∆t

∣∣∣∣
2

x

+ 3
n∑

k=1

∆t|D−vk|2 + β

n∑

k=1

∆t|D+D−vk|2x

− 5η

n∑

k=1

∆t|D+D−vk|2 6 |v0|2x +
n∑

k=1

∆t (1 + β) |vk|2.

Finally, using the inequalities of Proposition 3.1 and the fact that we have in a bound-
ary domain (0, L), we may conclude the proof. ¤
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Now, let us introduce the non-homogeneous linear scheme approximating the so-
lution of the (KdVK)NH problem :

vn+1 − vn

∆t
+ Avn+1 = fn.

The existence proof of the continuous case studied in the previous sections applies
in the discrete non-homogeneous linear case and the discrete nonlinear case for any
discretization of the non-linear part, in particular for fn = 1

2D−[un]2. Thus, we obtain
the following result of convergence :

Theorem 3.1. For any un ∈ XN satisfying the non-linear scheme (3.1), with
α = 1, and η 6 0, there exists ε0 > 0 such that, if ∆t 6 ε0, then there exists T > 0
and a constant C = C(T ) > 0 (independent of ∆t and ∆x) such that :

sup
k=0,...,p

|vk|2 + ∆t

p∑

k=0

|D−vk|2 − η∆t

p∑

k=0

|D−D−vk|2 6 C|v0|2.

This result means that the scheme is unconditionally stable. Let us observe that in
agreement with the gain of regularity of the (KdVK) equation, we obtain an additional
estimate respect to the analogous numerical scheme of the KdV equation, studied in
detail in [7].

4. Some numerical results

We study the re-normalized Korteweg-de Vries-Kawahara equation with initial
and boundary condition on [0, L], with L = 10 :

ut +
1
L5

ηuxxxxx +
1
L3

ηuxxx +
1
L

uux +
1
L

ux = 0.

We have taken η = −1, ∆t = 2.5 × 10−5, ∆x = 5 × 10−4. We compute the solution
during 9600 iterations in time, that is on the time interval [0, T ] with T = 0.24. The
initial value is

u0(x) =
α

cosh2 (βL(x− 1/2))
+

4α

cosh2 (2βL(x− 1/8))

with α = 12β2 and β = 2. This correspond to the superposition of two solitons
with different speeds. Using, Matlab we obtain In Figure 1, we have represented the
solution at time ti = iT/10 for i = 0, . . . , 9.

The validity of the results can be expressed by the graph of the function t 7→
‖u∆(·, t)‖L2(0,L), where u∆ is the discrete solution of the numerical scheme (see Figure
2). In theory, if the support of the solution stays in the interval (0, L), the L2 norm
must be conserved. It is not rigorously the case of our simulations, but looking at the
graphs of Figures 2, we can say that it is approximately certain for the KdV equation
(η = 0) : we have 0.06% of lost of the norm L2 value. In the case of the simulation of
the KdV-K equation (Figure 1), we note that the first pic touch the boundary x = 0
and then, we have 0.25% of lost of the norm L2 value.
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Figure 1. Interaction of two solitons for the Korteweg-de Vries-
Kawahara equation (η = −1).
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Universidad de Concepción,
Casilla 160-C,
Concepción, Chile.

E-mail address: mauricio@ing-mat.udec.cl

BDepartamento de Matemática,
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