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A note on the local discontinuous Galerkin method for linear

problems in elasticity

Rommel Bustinza

Abstract. In this paper we present a mixed local discontinuous Galerkin for-
mulation for linear elasticity problems in the plane with Dirichlet boundary con-
ditions. The approach follows previous dual-mixed methods and introduces the
stress and strain tensors, and the rotation, as auxiliary unknowns. Next, we use
suitable lifting operators to eliminate part of the unknowns of the corresponding
discrete system, and obtain an equivalent variational formulation. We discuss
about the unique solvability of the discrete scheme and the main difficulty that
arises to derive the a-priori error estimates. Finally, we propose a computable
a-posteriori error estimate and include some numerical examples, which show the
expected rates of convergence for the error (with respect to a suitable mesh-
dependent norm), as well as the good behaviour of the adaptivity algorithm to
recover the optimal rates of convergence, results that are not covered yet by the
theory.

1. Introduction

Discontinuous Galerkin (DG) method has been studied recently to solve different
kind of problems coming from physics and engineering applications. We refer to [1]
and references therein for an overview of the method. In addition, studies related
to the use of DG methods for the Poisson, Stokes, Maxwell and Oseen equations
can be found in [16], [7], [9], [10], and [11]. Concerning elasticity models, the nearly
incompressible linear case has been studied in [14], [15] and [12], by applying different
and known DG approaches, whose a-priori and/or a-posteriori results are still valid in
the incompressible limit.

Among the advantages of using DG methods we can mention the fact that we can
consider more general meshes (with hanging nodes, for e.g.) and different degrees of
approximation per element, since inter-element continuity of the approximate solution
is not strongly required. This latter property makes the DG methods suitable for the p
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and h−p version, as well as for local adaptivity, subject that is still under development
(see, e.g., [3], [5], [6], and [17]). On the other hand, the main disadvantage of this
approach is the fact that the number of degrees of freedom is increased, which could
be managed by performing some local adaptivity.

In this paper, we analyse the mixed local discontinuous Galerkin (LDG) method to
solve (numerically) a linear incompressible elasticity model, with Dirichlet boundary
conditions. In what follows, we present the model problem and give some discuss on
it. First, we let Ω be a bounded and simply connected domain en R

2 with polygonal
boundary Γ. Then, the model problem consists in finding the displacement u :=
(u1, u2)

t and the pressure-like unknown p of an incompressible material occupying
the region Ω, under the action of some external forces. Indeed, if σ(u, p), e(u), and
I ∈ R

2×2 denote the Cauchy tensor, the strain tensor of small deformations, and the
identity tensor, respectively, the constitutive equation is given by:

σ(u, p) = 2e(u) + p I in Ω ,

Then, given f ∈ [L2(Ω)]2 and g ∈ [H1/2(Γ)]2, we look for (σ, u, p) in appropriate
spaces such that

(1.1)
σ = 2e(u) + p I in Ω , divσ = −f in Ω ,

div u = 0 in Ω , and u = g on Γ ,

where div denotes the usual divergence operator div acting along each row of the
corresponding tensor. We point out that, due to the incompressibility of the material,
the Dirichlet datum g must satisfy the compatibility condition

∫

Γ g · ν = 0, where ν

is the unit outward normal to Γ. From here on, given any Hilbert space S, we denote
by S2 and S2×2 the spaces of vectors and tensors of order 2, respectively, with entries
in S, provided with the product norms induced by the norm of S. Also, for tensors
r := (rij), s := (sij) ∈ R

2×2, and vectors v := (v1, v2)
t, w := (w1, w2)

t ∈ R
2, we use

the standard notation r : s :=
∑2

i,j=1 rijsij , and denote by v⊗w the tensor of order 2

whose ijth entry is viwj . Note that the following identity holds: v ·(rw) = r : (v⊗w).
We remark that a dual-mixed formulation of (1.1) based on enriched PEERS

subspaces is proposed in [13], by introducing auxiliary unknowns such as t := e(u)
and ξ, which acts as a Lagrange multiplier, and using the identity e(u) = ∇u − γ,
with γ := 1

2 (∇u − (∇u)t) ∈ R :=
{

η ∈ [L2(Ω)]2×2 : η + ηt = 0
}

. Then, following
[13], our model (1.1) can be re-written as: Find (σ, t, p, u, γ) in appropriate spaces
such that

(1.2)
t = ∇u − γ in Ω , σ = 2t + p I in Ω , divσ = −f in Ω ,

tr(u) = 0 in Ω , and u = g on Γ ,

We begin this work by extending and/or adapting the ideas developed in [6] to obtain
a mixed LDG formulation for the model problem (1.2). Unfortunately we only can
establish the uniqueness solvability of the discrete scheme, which motivates us to
re-formulate the discrete variational formulation, considering suitable approximation
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spaces for the (symmetric) tensors t and σ, and avoiding the introduction of the
rotation γ.

The rest of the paper is organized as follows. In Section 2 we derive a mixed local
discontinuous Galerkin scheme, which includes the definition of the corresponding
numerical fluxes and the reduced mixed formulation, discussing its solvability. Finally,
an a-posteriori error estimate and some numerical experiments validating the good
performance of the associated adaptive algorithm are reported in Section 3.

2. The LDG formulation

In this section, we derive a discrete formulation for the linear elasticity model (1.2),
applying the local discontinuous Galerkin method and discuss about its solvability and
well-posing.

2.1. Meshes. We let {Th}h>0 be a family of shape-regular triangulations of Ω̄,
each made up of straight-side triangles K with diameter hK and unit outward normal
to ∂K given by νK . As usual, the index h also denotes h := max

K∈Th

hK . Then, given

Th, its edges are defined as follows. An interior edge of Th is the (non-empty) interior
of ∂K ∩ ∂K ′, where K and K ′ are two adjacent elements. A boundary edge of Th is
the (non-empty) interior of ∂K ∩ Γ, where K is a boundary element of Th. For each
edge e, he represents its length. In addition, we define E(K) := edges of K, Eint

h : list
of interior edges (counted only once) on Ω, EΓ

h : list of edges on Γ, and Ih: interior
grid generated by the triangulation, that is Ih := ∪{e : e ∈ Eint

h }. Also, we let Γh be
the partition of Γ, inherited by Th. In addition, we also assume that Th is of bounded

variation, which means that there exists l > 1, independent of the meshsize h, such
that l−1 6 hK

h
K′

6 l for each pair K, K ′ ∈ Th sharing an interior edge.

2.2. Averages and jumps. Next, we define average and jump operators. To
this end, let K and K ′ be two adjacent elements of Th and x be an arbitrary point
on the interior edge e = ∂K ∩ ∂K ′ ⊂ Ih. In addition, let v and τ be vector-, and
tensor-valued functions, respectively, that are smooth inside each element K ∈ Th. We
denote by (vK,e, τK,e) the restriction of (vK , τK) to e. Then, we define the averages
at x ∈ e by:

{v} :=
1

2

(

vK,e + vK′,e

)

, {τ}e :=
1

2

(

τK,e + τK′,e

)

.

Similarly, the jumps at x ∈ e are given by

[[v]] := vK,e ⊗ νK + vK′,e ⊗ νK′ [[τ ]]e := τK,e νK + τK′,e νK′ .

On boundary edges e, we set {v} := v, {τ} := τ , as well as , [[v]] := v ⊗ ν and

[[τ ]] = τ ν.

2.3. The global discrete formulation. Given a mesh Th, we proceed as in [6]
and test each one of the unknowns (introduced at the introduction) by suitable test
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functions. Then, we wish to approximate the solution of (1.1) by (th, uh, σh, ph, γh, ξh) ∈
Σh × Vh × Σh ×Wh × Rh × R, where

(2.1)

Σh :=
{

s ∈ [L2(Ω)]2×2 : s|K ∈ [Pr(K)]2×2 ∀K ∈ Th

}

,

Vh :=
{

v ∈ [H1(Th)]2 : v|K ∈ [Pk(K)]2 ∀K ∈ Th

}

,

Wh :=
{

q ∈ L2(Ω) : q|K ∈ Pk−1(K) ∀K ∈ Th

}

,

Rh :=
{

η ∈ Σh : η|K + (η|K)t = 0 ∀K ∈ Th

}

,

with integers k > 1 and r > 0. Hereafter, given an integer m > 0 we denote by
Pm(K) the space of polynomials of total degree at most m on K. Also, the spaces
Σh, Rh and Wh are endowed with the respective and standard L2− norms, which for
simplicity are denoted by ‖ · ‖0,Ω.

Then, defining the so-called numerical fluxes as in [6], we arise to the global
discrete LDG formulation: Find (th, uh, σh, ph, γh, ξh) ∈ Σh×Vh×Σh×Wh×Rh×R,

such that

(2.2)

2

∫

Ω

th : s −
∫

Ω

σh : s +

∫

Ω

ph tr(s) = 0 ,

∫

Ω

th : τ −
{
∫

Ω

∇huh : τ − S(uh, τ )

}

+

∫

Ω

γh : τ − ξh

∫

Ω

tr(τ ) = G(τ ) ,

{
∫

Ω

σh : ∇hv − S(v, σh)

}

+ α(uh, v) = F (v) ,

∫

Ω

q tr(th) = 0 ,

∫

Ω

σh : η = 0 ,

λ

∫

Ω

tr(σh) = 0 ,

for all (s, v, τ , q, η, λ) ∈ Σh × Vh × Σh ×Wh × Rh × R. From here on, ∇h denotes
the piecewise gradient, and the bilinear forms S : [H1(Th)]2 × [L2(Ω)]2×2 → R and
α : [H1(Th)]2 × [H1(Th)]2 → R, as well as the linear operators G : [L2(Ω)]2×2 → R

and F : [H1(Th)]2 → R, are given by:

S(w, τ ) :=

∫

EI

(

{τ} − [[τ ]] ⊗ β
)

: [[w]] +

∫

ED

w · τν ,

α(w, v) :=

∫

EI

α [[w]] : [[v]] +

∫

ED

α (w ⊗ ν) : (v ⊗ ν) ,

G(τ ) :=

∫

ED

g · τν , F (v) :=

∫

Ω

f · v +

∫

ED

α (g ⊗ ν) : (v ⊗ ν) ,

for all w , v ∈ [H1(Th)]2 and τ ∈ [L2(Ω)]2×2.
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The stabilization parameters α and β are chosen so that the solvability of the
discrete LDG formulation is guaranteed. Therefore, we require that α ∈ P0(Ih ∪ Γh)
and β ∈ P 0(Ih). Indeed, β can be chosen as the null vector. At this point, we
introduce the energy-norm associated to Vh

|||v|||2h := ||∇hv||20,Ω + |v|2h ∀v ∈ [H1(Th)]2 ,

where

|v|2h := ||α1/2[[v]]||20,Ih
+ ||α1/2v ⊗ ν||20,ED

∀v ∈ [H1(Th)]2 ,

2.4. A reduced mixed formulation. In what follows, we proceed as in [6] and
obtain an equivalent reduced formulation to (2.2). In order to get this, we first notice
that S and G are bounded. Indeed, there exists CS > 0, independent of the meshsize,
such that

|S(v, τ )| 6 CS |v|h ||τ ||0,Ω ∀ (v, τ ) ∈ [H1(Th)]2 × Σh .

Therefore, we let Sh : [H1(Th)]2 → Σh be the linear and bounded operator induced
by the bilinear form s, for which, given v ∈ [H1(Th)]2, Sh(v) is the unique element in
Σh (guaranteed by the Riesz representation Theorem) satisfying

∫

Ω

Sh(v) : τ = S(v, τ ) ∀ τ ∈ Σh .

Analogously, we let G be the unique element in Σh such that

∫

Ω

G : τ =

∫

ED

g · τν ∀ τ ∈ Σh .

We observe that if the displacement u, that solves problem (1.1), belongs to [Ht(Ω)]2,
with t > 1, then Sh(u) = G. Moreover, applying a static condensation argument to
the first two equations in (2.2), we deduce

th = ΠΣh

(

∇huh − Sh(uh) + G − γh + ξh I
)

and σh = 2th + ph I ,

where ΠΣh
denotes the L2−projection operator onto Σh. As in [6], we require that

∇hv ∈ Σh for all v ∈ Vh, which is verified by considering r = k or r = k − 1, and
thus we obtain

(2.3) th = ∇huh − Sh(uh) + G − γh + ξh I and σh = 2th + ph I .

After that, we introduce the bilinear forms Ah : ([H1(Th)]2×R×R)×([H1(Th)]2×R×
R) → R and Bh : ([H1(Th)]2 × R × R) × L2(Ω) → R, which are defined, respectively,
by

Ah((w, ρ, µ), (v, η, λ)) := α(w, v)

+2

∫

Ω

(∇hw − Sh(w) − ρ + µ I) :
(

∇hv − Sh(v) − η + λ I)
)

,

and

Bh((v, η, λ), q) :=

∫

Ω

q I :
(

∇hv − Sh(v) − η + λ I)
)

,
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for all w , v ∈ [H1(Th)]2, ρ , η ∈ Rh, µ , λ ∈ R, and q ∈ W . In addition, we let
Fh : [H1(Th)]2 × R × R → R and Gh : L2(Ω) → R be the linear functionals, defined
by

Fh(v, η, λ) := F (v)−
∫

Ω

G :
(

∇hv−Sh(v)−η+λ I)
)

∀ (v, η, λ) ∈ [H1(Th)]2×R×R ,

and

Gh(q) := −
∫

ED

q g · ν ∀ q ∈ L2(Ω) .

The next result establishes an equivalent formulation to (2.2).

Lemma 2.1. Let (th, σh, ph, uh, γh, ξh) ∈ Σh × Σh × Wh × Vh × Rh × R be a

solution of (2.2). Then there holds

(2.4)
Ah((uh, γh, ξh), (v, η, λ)) + Bh((v, η, λ), ph) = Fh(v, η, λ) ∀ (v, η, λ) ∈ Vh × Rh × R ,

Bh((uh, γh, ξh), q) = Gh(q) ∀ q ∈ Wh .

Conversely, if (uh, γh, ξh, ph) ∈ Vh ×Rh ×R×Wh is a solution of (2.4), and th and

σh are defined by (2.3), then (th, σh, uh, ph, γh, ξh) is a solution of (2.2).

Now, in order to prove the well-posedness of (2.4), we think of applying the
Babuška-Brezzi theory. It is quite easy to check the inf-sup condition for Bh (its
proof is very similar to that in Lemma 3.3 in [6]). Unfortunately, the coerciveness of
Ah on Ker(Bh) seems not to be verified, due to (up to the authors’ knowledge) the
inclusion of the rotation as an additional unknown. This motivates us to reformulate
our problem (1.1), avoiding the introduction of the piecewise rotation γh, considering
the space

Σs
h :=

{

s ∈ Σh : s|K = (s|K)t ∀K ∈ Th

}

to approximate the symmetric tensors σ and t, instead of Σh, and keeping the discrete
spaces Vh and Wh as before. As a result, we derive another mixed LDG formulation,
which is well-posed and has the optimal rates of convergence. The details of this work
can be seen in [4], which applies this approach to solve a class of nonlinear problems in
elasticity, containing as a by-product the linear case. Nevertheless, we still can prove
the existence and uniqueness of the solution of (2.2), by checking that the solution of
the corresponding homogeneous linear system is only the trivial one.

Theorem 2.1. Problem (2.2) has one and only one solution.

Proof. We consider the associated homogeneous linear system to (2.2). We know
in advance that ξh = 0, th = ∇huh−Sh(uh)−γh, and σh = 2th +ph I. Next, testing
the third, fourth and fith equations in (2.2) by uh, γh and ph/2, respectively, and
after adding them and replacing σh in terms of uh, γh and ph, we obtain that

2
∥

∥

∥
∇huh − Sh(uh) − γh +

ph

2
I

∥

∥

∥

2

0,Ω
+ |uh|2h = 0 ,

which establishes that ∇huh − Sh(uh) − γh + ph

2 I = 0 and uh ∈ C(Ω̄) with uh =

0 on ED. Therefore, we have that Sh(uh) = 0, γh = 1
2

(

∇huh − (∇huh)t
)

, and
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eTh
(uh) + ph

2 I = 0, where eTh
(v) denotes the piecewise symmetric part of ∇hv, for

each v ∈ [H1(Th)]2. Then, we deduce that th = − ph

2 I, and since tr(th)=0 in each
K ∈ Th, we conclude that ph = 0, th = 0 = σh, and eTh

(uh) = 0. Now, using the
generalized Korn’s inequality (cf. [2])

||∇hv||20,Ω 6 C
(

||eTh
(v)||20,Ω + |v|2h

)

∀v ∈ [H1(Th)]2 ,

we find that ∇huh = 0, which implies that uh = 0 and γh = 0. �

3. Numerical Results

In this section we provide a numerical example illustrating the performance of the
solvable LDG method (2.2). Hereafter, N denotes the number of degrees of freedom
defining the subspace Σh × Vh × Σh ×Wh × Rh × R, that is N := Cκ × (number of
triangles of Th) + 1, with Cκ = 16, 42 for the P0 −P1 −P0 −P0 −P0 and P1 −P2 −
P1 −P1 −P1 approximations, respectively. In addition, the global error is defined as
follows

e :=
{

||t − th||20,Ω + |||u − uh|||2h + ||σ − σh||20,Ω + |p − ph||20,Ω + ||γ − γh||20,Ω

}1/2

,

where (th, uh, σh, γh, ph, ξh) ∈ Σh×Vh×Σh×Wh×Rh×R is the unique solution of
the discrete scheme (2.2). On the other hand, based on a previous work dealing with
a class of nonlinear Stokes problems (cf. [6]), we propose the following a-posteriori
error estimator

ϑ :=

(

∑

K∈Th

ϑ2
K

)1/2

,

where for each K ∈ Th, ϑK is defined as

ϑ2
K := h2

K ||f + div (2th + ph I)||20,K + ||α1/2[[uh]]||20,∂K∩EI
+ || tr(th)||20,K

+hK ||[[2th + ph I]]||20,∂K\Γ + hK ||σh − (2th + ph I)||20,∂K∩ED
+ ||σh − (2th + ph I)||20,K

+||α1/2(uh − g) ⊗ ν||20,∂K∩ED
+ hK ||{σh} − [[σh]] ⊗ β − {2th + ph I}||20,∂K∩EI

+ |K| |p̄h|2 ,

with p̄h being the mean value of ph. The refinement strategy is described next ([19]):

(1) Start with a coarse mesh Th.
(2) Solve the discrete problem (2.2) for the current mesh Th.
(3) Compute ϑK for each triangle K ∈ Th.
(4) Evaluate stopping criterion and decide to finish or go to next step.
(5) Apply red-blue-green procedure to refine each K ′ ∈ Th whose error estimator

ϑK′ satisfies ϑK′ > 1
2 max{ϑK : K ∈ Th}.

(6) Define resulting mesh as the current mesh Th and go to step 2.

Respect to the choices of the parameters α and β, we point out that considering α
independent of the meshsize (i.e of order O(1)), and proceeding as in [7] (see also [11]),
we can obtain the same rates of convergence in energy norm for the displacement and
the other unknowns than the obtained taking α of order O(h−1). However, we are not
able (at least theoretically) to recover the optimal rate of convergence for the L2-error
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of the displacement, resulting in a loss of
√

h in its approximation. Furthermore, it
has been shown in [8] that on Cartesian grids, with a special choice of the numerical
fluxes (for which α is of order O(1) and β is such that |β · νK | = 1/2) and for equal-
order elements of bilinear polynomials, the LDG method super-converges. A similar
phenomenon has not been observed on unstructured grids.

The numerical results presented below were obtained in a Compaq Alpha ES40

Parallel Computer using a MATLAB code, setting the parameters α = 1/h and β =
(1, 1)t in the corresponding formulation, where the function h ∈ L∞(Ih∪Γh) is defined
by h(x) = min{hK , hK′}, if x ∈ int(∂K∩∂K ′), and by h(x) = hK if x ∈ int(∂K∩Γh).

In addition, we test our results considering both regular meshes and meshes with
hanging nodes, in which case our refinement algorithm is similar to the one described
before, but instead of applying the red-blue-green procedure in step 5, we apply the
red one.

We consider the L−shaped domain Ω := (−1, 1)2\[0, 1]2, and choose f and g so
that the exact solution is given by



















u(x) :=
[

(x1 − 0.01)2 + (x2 − 0.01)2
]−1/2

(x2 − 0.01, 0.01− x1) ,

p(x) :=
1

1.1 − x1
− 1

3
ln

(

441

11

)

,

for all x := (x1, x2)
t ∈ Ω. We observe here that u is divergence free in Ω and

singular in an exterior neighborhood of (0, 0). In addition, p is singular in an exterior
neighborhood of the segment {1}× [0, 1]. Figures 4.1 and 4.2 display the global errors
e, ergb, and er, corresponding to the uniform, red-blue-green, and red refinements,
respectively, versus the degrees of freedom N (in a log-log scale). In all cases the
errors of the adaptive methods decrease much faster than those of the uniform ones,
recovering the order O(h) and O(h2) for P0 −P1−P0 −P0−P0 and P1 −P2−P1 −
P1 −P1 approximations, respectively. Some intermediate adapted meshes, generated
by different refinements, are displayed in Figures 4.3-4.6, showing that the adaptive
algorithms are able to recognize the numerical singularities of u and p. Moreover,
we remark that the red refinement is more localized around the singularities than the
blue-red-green one.

Finally, taking into account the numerical results, we can say that despite we are
still not able to derive the a-priori error estimate, they show (at least numerically)
that the rates of convergence of the errors are optimal, considering the regularity on
the exact solution. Moreover, we point out that the proposed refinement algorithms
are able to recover the optimal rate of convergence and/or improve the quality of the
approximation, in presence of (numerical) singularities.
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DOF

e (unif)
e (rbg)
e (r)

Figure 4.1 Example 1 with P0 − P0 − P1 − P0 approximation:
global error e for the uniform and adaptive refinements.
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DOF

e (unif)
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e (r)

Figure 4.2 Example 1 with P1 − P2 − P1 − P1 − P1 approximation:
global error e for the uniform and adaptive refinements.
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Figure 4.3 Example 1 with P0 − P1 −P0 − P0 − P0 approximation, without hanging

nodes: adapted intermediate meshes with 1217, 3105, 11201 and 96017 degrees of freedom.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 4.4 Example 1 with P0 − P1 −P0 −P0 −P0 approximation, with hanging nodes:

adapted intermediate meshes with 1153, 10945, 33505 and 98689 degrees of freedom.
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Figure 4.5 Example 1 with P1 − P2 −P1 − P1 − P1 approximation, without hanging

nodes: adapted intermediate meshes with 3193, 6511, 27049 and 58255 degrees of freedom.
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Figure 4.6 Example 1 with P1 − P2 −P1 −P1 −P1 approximation, with hanging nodes:

adapted intermediate meshes with 2899, 4023, 14491 and 47251 degrees of freedom.
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