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A Method to Compute the Surface Green’s Function of a Piezoelectric

Half-Space

Ignacio Muga and Sebastián Ossandón

Abstract. The Piezoelectric Surface Acoustic Wave devices (so called SAW Components) are currently used
today for frequency filtering, their main applications being to digital telecommunication systems. The need
to improve their designs requires the development of accurate mathematical models to predict their physical
performance. We develop here one of the essential tools used in these simulations : the 3D Green’s function.

1. Introduction

This work is devoted to the computation of the 3D Green’s function associated with Piezoelectric Surface
Acoustic Wave Components. Our purpose is to generalize the techniques used to obtain the 2D Green’s
function (see [9]), to design a technique for the three dimensional case.
This paper is organized as follows: First we formulate the model problem (treated extensively in several articles
and Ph.D theses, for example see [2], [3], [4], [6], [8], [9] and [11]). Next, we describe the methodological
steps to obtain the 3D Spectral Green’s Function. Finally, we compute the 3D Spatial Green’s Function by
an inverse Fourier transform : we analyze each singular contribution analytically and we propose a numerical
method based on an FFT technique for the treatment of the regular part.

2. Setting the Mathematical Model

We consider a piezoelectric material filling the whole upper half-space IR3
+ := {x = (x1, x2, x3) ∈ IR3/x2 > 0}.

The lower half-space IR3
− := {x = (x1, x2, x3) ∈ IR3/x2 < 0} represents a vacuum domain and we denote by

Γ := {x = (x1, x2, x3) ∈ IR3/x2 = 0} the common boundary between both media. The unit normal vector
on the boundary Γ is considered pointing to the interior of IR3

+, that is n = (0, 1, 0). The vacuum is only
described by the permittivity of free space (ǫ0 ∈ IR).
In general, the piezoelectric materials are described by complex tensors. However, we assume here that the
coefficients of those tensors are real constants and we denote them by :

Cijkl : the coefficients of the elasticity tensor for a constant electric field,
ekij : the coefficients of the piezoelectric tensor,
ǫik : the coefficients of the permittivity tensor for a constant deformation,
ρ : the density of the piezoelectric material.

These coefficients have the following symmetry properties (see [1]) : Cijkl = Cklij = Cijlk = Cjikl , eikl = eilk

and ǫik = ǫki.
We adopt the following advantageous matrix and vector notations :

Cjl =




C1j1l C1j2l C1j3l

C2j1l C2j2l C2j3l

C3j1l C3j2l C3j3l



 , ejl =




ej1l

ej2l

ej3l



 , Ajl =

(
Cjl elj

et
jl −ǫjl

)
1 6 j, l 6 3 .(2.1)
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For all regular vector-valued function v = (v1, v2, v3, v4) : IR3
+ −→4 for which derivatives make sense, we

define the tensor field T (v) = (Tij(v)) by :

(2.2) Tij(v) =

3∑

k=1

[(
3∑

l=1

Cijkl

∂vl

∂xk

)
+ ekij

∂v4

∂xk

]
1 6 i, j 6 3 .

Analogously, we define the vector D(v) = (Di(v)) by the expression :

(2.3) Di(v) =

3∑

k=1

[(
3∑

l=1

ejkl

∂vl

∂xk

)
− ǫjk

∂v4

∂xk

]
1 6 i 6 3 .

3. The surface Green’s function

For a given frequency ω > 0, the surface Green’s function is the impulse response of a media to an electric
or stress excitation applied over its surface. It is defined by a 4 × 4 matrix linking the normal stress and the
surface density of charge (the sources), with the mechanical stress and the electric potential (the waves). This
relation is established by the convolution :

(
up(x)
φ(x)

)
=

∫

Γ

Gy(ω,x)

(
T(up, φ)n

(D(up, φ) +0 ∇φ) · n

)
(y) dS(y), ∀x ∈ Γ.(3.1)

The surface Green’s function Gy(ω,x) is computed taking a source point y = (y1, 0, y3) ∈ Γ. Since there is
no horizontal variation in the geometry of the problem, we can suppose for the moment that y1 = y3 = 0.
Denote by gq (q = 1, ..., 4) the qth column vector of the matrix Gy = (glq). In order to have the integral
representation (3.1), our surface Green’s function must be solution (in a distribution sense) of the coupled
systems :

(P+)






−div T(gq) − ρω2




g1q

g2q

g3q



 = 0 in IR3
+, 1 6 q 6 4

−div D(gq) = 0 in IR3
+, 1 6 q 6 4

T(gq)n = δ(x1, x3)




δ1q

δ2q

δ3q



 on Γ, 1 6 q 6 4

(D(gq) +0 ∇g4q) · n = δ(x1, x3)δ4q on Γ, 1 6 q 6 4

+ Radiation Condition when |x| → ∞.

(P−)






−∆g4q = 0 in IR3
−, 1 6 q 6 4

[g4q] = 0 on Γ, 1 6 q 6 4

+ Radiation Condition when |x| → ∞.

Notice that the symbol δ(x1, x3) denotes the Dirac’s delta in IR2 while δlq denotes the usual Kronecker’s delta.
The brackets [·] represents the jump of the function over the surface.
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3.1. Modes analysis.

3.1.1. Vacuum modes. Taking a Fourier transform in the directions x1 and x3, the problem (P−) becomes
:

(3.2)






−∂2ĝ4q

∂x2
2

+ (k2
1 + k2

3)ĝ4q = 0 {x2 < 0},

ĝ4q = ĝ4q(0) {x2 = 0},

ĝ4q has to be bounded when x2 → −∞.

For 1 6 q 6 4, the bounded solutions of equation (3.2) are :

(3.3) ĝ4q(k1, x2, k3) = ĝ4q(k1, 0, k3)e
x2

√
k2

1
+k2

3 , 1 6 q 6 4.

3.1.2. Piezoelectric modes. After a Fourier transform in the directions x1 and x3, (P+) becomes the initial
value problem :

(3.4)






−A22
d2ĝq

dx2
2

+ i (k1(A21 + A12) + k3(A23 + A32))
dĝq

dx2
+

+
(
k2
1A11 + k1k3(A13 + A31) + k2

3A33 − ρω2A00

)
ĝq = 0 {x2 > 0},

A22
dĝq

dx2
− i (k1A21 + k3A23) ĝq +0

∂ĝq4

∂x2
(k1, 0, k3)e4 =

eq

2π
{x2 = 0},

ĝq satisfies a admissible mode condition.

The matrices Ajl are defined in (2.1) and A00 := diag{1, 1, 1, 0}. The vector eq is the qth vector in the
canonical basis of IR4 (e4 is the 4th one).
We define the following vectors :

(3.5) t̂q := iA22
dĝq

dx2
+ (k1A21 + k3A23) ĝq and wq =

(
ĝq

t̂q

)
.

From now on, we will work with the normalized variables s1 = k1

ω
and s3 = k3

ω
.

When x2 > 0, a simple computation shows that wq satisfies the first order ordinary differential equation :

(3.6)
i

ω

dwq

dx2
= Bwq , {x2 > 0},

where B is the 8 × 8 matrix whose entries in terms of 4 × 4 matrices are :

(3.7)






B11 = −A−1
22 (s1A21 + s3A23)

B12 = ω−1A−1
22

B21 = ω (s1A12 + s3A32)A−1
22 (s1A21 + s3A23)

−ω
(
s2
1A11 + s1s3(A13 + A31) + s2

3A33 − ρA00

)

B22 = −(s1A12 + s3A32)A
−1
22 .

For the applications, the matrix A22 (which only depends on the characteristics of the piezoelectric material)
is a non singular matrix.
We want to study the independent solutions (modes) of equation (3.6). We start the analysis looking at the
spectral problem for the matrix B. So we look for the values λ such that there exists a non zero vector :

(
u

v

)
satisfying (B − λI)

(
u

v

)
= 0.
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From the equation above, we observe that the vector v can be easily computed in terms of u as :

(3.8) v = ω (λA22 + s1A21 + s3A23)u .

Then, the eigenproblem is reduced to find the nontrivial solutions of :

(3.9) A(s1, λ, s3)u = 0 ,

where,

(3.10) A(s1, λ, s3)=λ2A22+λs1(A21 + A12)+λs3(A23 + A32)+s2
1A11+s1s3(A13 + A31)+s2

3A33−ρA00.

Thus, for fixed s1 and s3, the eigenvalues can be computed as the roots of the eight degree polynomial in λ :

(3.11) det (A(s1, λ, s3)) = 0 .

It is not difficult to show that the equation (3.11) has eight different roots {λj}8
j=1 for almost all (s1, s3) ∈2.

Hence, the matrix B = B(s1, s3) is diagonlizable a.e. in 2. If the spectral pair (λj ,uj) is a solution of equation
(3.9), then the set :

(3.12)
{
uje

−iωλjx2

}8

j=1

is a set of independent solutions of the differential equation of problem (3.4). Moreover, the initial conditions
of these solutions are respectively in the set :

(3.13) {−ivj}8
j=1 ,

where each vj is related with uj by the equation (3.8).
From the set (3.12) we consider as admissible modes, the ones associated with complex eigenvalues λj with
ℑm(λj) > 0.
For real eigenvalues λj ∈ IR, the corresponding vectors uj and vj are real valued. The associated plane wave

uje
−iω(s1x1+λjx2+s3x3) is interpreted as a propagative electroelastic wave in the volume. The transported

energy of such a wave is given by the Poynting vector P = (Pi) (see [3] or [9]), which in this case has the
expression :

(3.14) Pi =
ω2

2
ut

j (s1Ai1 + λjAi2 + s3Ai3)uj .

Since there is no acoustic source into the piezoelectric material, the waves must not transport the energy
towards the surface. Hence we look for plane waves satisfying P2 > 0. In conclusion, when λj ∈, the solution
uje

−iωλjx2 will be admissible if it satisfies the condition :

(3.15) uj · vj > 0.

It can be shown (for almost all (s1, s3) ∈2) that there are always four and only four admissible modes.

3.2. The spectral Green’s function. Let U be the 4 × 4 matrix such that the column vectors
are composed by the admissible {uj}j=1,...,4. Each ĝq must be written as a linear combination of the
{uje

−iωλjx2}j=1,...,4. So when x2 = 0, the spectral surface Green function should have an expression of
the form :

(3.16) Ĝ

∣∣∣
x2=0

= U H,

for a matrix H containing the coefficients of the linear combinations.
Let V be the matrix whose column vectors are composed by the set {ω−1vj}j=1,...,4 , where each vj is related
with the admissible mode uje

−iωλjx2 by formula (3.8). The matrices U and V are independent from frequency,
so we can compute them without knowing the value of ω > 0. The computation of matrix V is straightforward
from U :

(3.17)

{
V = A22 U diag{λ1, ..., λ4} + (s1A12 + s3A32)U

=
(
A22 U diag{λ1, ..., λ4}U−1 + s1A12 + s3A32

)
U.

Let I the identity matrix and I4 be the 4 × 4 matrix having the value 1 in the intersection of the 4th column
with the 4th row and zero in all the others entries. By the initial conditions of the system (3.4), we get :

(3.18) −iωV H +0 ω
√

s2
1 + s2

3 I4 UH =
1

2π
I.
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So the unknown matrix H has the form :

(3.19) H =
1

2πω

(
−iV +0

√
s2
1 + s2

3 I4 U

)−1

,

provided that the matrix on the left-hand side is invertible. Finally, from equation (3.16) we get the expression
for the spectral surface Green function :

(3.20) Ĝ

∣∣∣
x2=0

=
1

2πω
U

(
−iV +0

√
s2
1 + s2

3 I4 U

)−1

.

An easy way to compute the matrix on the left-hand side of equation (3.20), can be done introducing the
ω−independent matrix :

(3.21) W = (Wql) = U V −1 =
(
A22 U diag{λ1, ..., λ4}U−1 + s1A12 + s3A32

)−1
.

If W44 6= i−1
0 (s2

1 + s2
3)

− 1

2 , matrix W allows to write equation (3.20) as :

(3.22) Ĝ

∣∣∣
x2=0

=
i

2πω
W

(
I + i0

√
s2
1 + s2

3 I4 W

)−1

.

So each component of −2πiω Ĝ

∣∣∣
x2=0

can be computed independently from frequency ω > 0 by :

(3.23) −2πiω ĝlq = Wlq − iǫ0

√
s2
1 + s2

3

Wl4W4q

1 + iǫ0
√

s2
1 + s2

3W44

, l = 1...4, q = 1...4.

3.3. The spatial Green’s function. We obtain the spatial surface Green’s function as the double
inverse Fourier transform of the spectral surface Green’s function. Having equation (3.23) in mind we write :

G0(ω, x1, x3) =
i

(2π)2ω

∫ +∞

−∞

∫ +∞

−∞

−2πiω Ĝ

∣∣∣
x2=0

e−i(k1x1+k3x3)dk1dk3

=
iω

(2π)2

∫ +∞

−∞

∫ +∞

−∞

−2πiω Ĝ

∣∣∣
x2=0

e−iω(s1x1+s3x3)ds1ds3.(3.24)

So when the source point y = (y1, 0, y3) is not necessarily the origin, the surface Green’s function has the
expression :

(3.25) Gy(ω, x1, x3) =
iω

(2π)2

∫ ∞

−∞

∫ +∞

−∞

−2πiω Ĝ

∣∣∣
x2=0

e−iω(s1(x1−y1)+s3(x3−y3))ds1ds3.

An interesting approach to reduce one of the Fourier transforms, is to work with some special kind of polar
coordinates :

(3.26) s̄ =






√
s2
1 + s2

3 if s3 > 0
s3 if s3 = 0

−
√

s2
1 + s2

3 if s3 < 0

and Φ̄ = arctg

(
s3

s1

)
.

Thus, the (s1, s3)−plane is described by s̄ ∈] −∞, +∞[ and Φ̄ ∈ [0, π[.
In that way equation (3.25) reduces to :

(3.27) Gy(ω, x1, x3) =
iω

(2π)2

∫ π

0

∫ +∞

−∞

−2πiω
√

s̄2 Ĝ

∣∣∣
x2=0

e−is̄ω((x1−y1) sin Φ̄+(x3−y3) cos Φ̄)ds̄ dΦ̄.

We can define the following spectral function (independent from frequency ω > 0) :

(3.28) F̂Φ̄(s̄) := −2πiω
√

s̄2 Ĝ

∣∣∣
x2=0

.

Plugging this definition into equation (3.27) we see that the second integral can be looked (formally) as a
Fourier transform :
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(3.29)






Gy(ω, x1, x3) =
iω

(2π)2

∫ π

0

∫ +∞

−∞

F̂Φ̄(s̄)e−is̄ω((x1−y1) sin Φ̄+(x3−y3) cos Φ̄)ds̄ dΦ̄

=
iω

2π

∫ π

0

FΦ̄

[
ω
(
(x1 − y1) sin Φ̄ + (x3 − y3) cos Φ̄

)]
dΦ̄.

4. The numerical computation

The numerical application of the Fourier transform is very unstable, due to singularities and slow decay at
infinity of the spectral surface Green’s function Ĝ (see [3] or [9]). To avoid this difficulty, we isolate these bad
behaviors and we treat them analytically. Only the remaining regular part will be treated numerically by an
FFT (Fast Fourier Transform) technique. Thus, we split Ĝ in such a way that Ĝ = Ĝregular + Ĝsingular.

4.1. Treatment of the singular part. We analyze in this section the singularities due to the existence
of poles, the singularity in a neigbourhood of zero (s̄ = 0) and the slow decay at infinity.

4.1.1. Treatment of the poles. In [6] we describe a technique to compute the poles of Ĝ, which in fact, it
is a curve of singularities. We know that the expression for this singular part, in polar coordinates s̄ and Φ̄,
is given by :

(4.1) Ĝpole(s̄, Φ̄) =
Q(s̄p(Φ̄), Φ̄)(s̄ + s̄p(Φ̄))

(s̄2 − s̄2
p(Φ̄))

+
Q(−s̄p(Φ̄), Φ̄)(s̄ − s̄p(Φ̄))

(s̄2 − s̄2
p(Φ̄))

,

where s̄p(Φ̄) is the parametrization of the curve of singularities and Q(s̄p(Φ̄), Φ̄) is an associated regular (4×4)
matrix (see [6] for the details). Using the inverse Fourier transform (equation (3.27)), we get :

(4.2) Gpole
y (ω,x1,x3)=

iω

4π2

∫ π

0

∫ +∞

−∞

[
Q(s̄p(Φ̄), Φ̄)(s̄+s̄p(Φ̄))

(s̄2 − s̄2
p(Φ̄))

+
Q(−̄sp(Φ̄), Φ̄)(s̄−s̄p(Φ̄))

(s̄2 − s̄2
p(Φ̄))

]
√

s̄2e−is̄uds̄dΦ̄,

where u = ω((x1 − y1) cos Φ̄ + (x3 − y3) sin Φ̄).
We like to compute an exact expression for the following quantities :

(4.3)






F 1
Φ̄
(u) =

∫ +∞

−∞

√
s̄2(s̄ + s̄p(Φ̄))e−is̄u

(s̄2 − s̄2
p(Φ̄))

ds̄

and

F 2
Φ̄
(u) =

∫ +∞

−∞

√
s̄2(s̄ − s̄p(Φ̄))e−is̄u

(s̄2 − s̄2
p(Φ̄))

ds̄.

With the help of the residue theorem [10] we can obtain an expression for the integrals in (4.3). Then, it can
be shown that (see [7]) :

(4.4) Gpole
y (ω, x1, x3) = − ω

2π

∫ π

0

Q
(
sign(u) s̄p(Φ̄) , Φ̄

)√
s̄2

p(Φ̄) sgn(u) e−is̄p(Φ̄)|u|dΦ̄.

4.1.2. Singularity in a neigbourhood of zero (s̄ = 0). Due to the electrostatic behavior of the equation,
the surface spectral Green’s function presents on the 4,4 component, a singularity of the form :

(4.5) ĝZ
44(s̄, Φ̄) =

C(Φ̄)

ω
√

s2
1 + s2

3

,

where C(Φ̄) is a complex function of the variable Φ̄.
We can prove (see [7] for the details) that the equation (4.5) is the Fourier transform of :

(4.6) gZ
44(x1, x3, y1, y3) =

C′
(
tan−1(x3−y3

x1−y1

)
)

√
(x1 − y1)2 + (x3 − y3)2

,

where C′(·) is a function related to C(Φ̄).
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4.1.3. Treatment of the behavior at infinity. The Spectral Green’s function presents a behavior at infinity
given by the Fourier transform of the fundamental solution of the static problem, which correspond to problems
(P+) and (P−) when ω = 0.
It is possible to prove using some properties of the matrices Ajl, that when ω = 0, the 3D spatial Green’s
function on the surface may be written as :

(4.7) G∞(x1, x3, y1, y3) =
C0√

(x1 − y1)2 + (x3 − y3)2
+

C1

(
tan−1(x3−y3

x1−y1

)
)

√
(x1 − y1)2 + (x3 − y3)2

,

for some complex constant C0 and a function C1 depending on the angle (see [7] for the details).

4.2. Treatment of the regular part. Once the singularities are isolated as much as possible, we use a
numerical technique to treat the regular part of Ĝ (Ĝreg). We propose here to use equation (3.27), to obtain
the Spatial Green’s function of the regular part :

(4.8) Greg
y (ω, x1, x3) =

iω

4π2

∫ π

0

∫ +∞

−∞

Ĝreg(s̄, Φ̄)
√

s̄2e−iωs̄((x1−y1) cos Φ̄+(x3−y3) sin Φ̄)ds̄dΦ̄

The first integral on (]−∞, +∞[) is treated numerically using an FFT technique :

(4.9) F
reg

Φ̄
(u) =

1

2π

∫ +∞

−∞

F̂
reg

Φ̄
(s̄)e−is̄uds̄ ≈ FFT

(
F̂

reg

Φ̄
(s̄)
)

where u = ω((x1−y1) cos Φ̄+(x3−y3) sin Φ̄) and F̂
reg

Φ̄
= −2πiω

√
s̄2Ĝreg (which is independent from frecuency

ω > 0).
In order to discretize the equation (4.9), we take a positive value s̄max > 0. Next we define the step ∆s̄ =
2s̄max

N
and the nodes s̄n = −s̄max + n∆s̄, where 0 6 n 6 N , N = 2l and l ∈.

For the u variable we take umax > 0 and we define the step ∆u =
2umax

N
and the nodes um = −umax +m∆u,

for 0 6 m 6 N .
By the Sampling Theorem, a band-limited signal can be reconstructed if the sampling frequency is greater
than twice the bandwidth of the signal (otherwise aliasing would result). In other words we need to satisfy :

∆s̄ ∆u =
2π

N
and 2s̄maxumax = πN.

Now, applying the trapezoidal rule to (4.9) we obtain :

(4.10) F
reg

ω,Φ̄
(um) ≈ (−1)m ∆s̄

2π

N−1∑

n=0

(−1)n F̂
reg

ω,Φ̄
(s̄n) e−

i2πmn
N + (−1)m ∆s̄

4π

(
F̂

reg

ω,Φ̄
(s̄N ) − F̂

reg

ω,Φ̄
(s̄0)

)
.

Finally, we discretize the variable Φ̄ by the nodes Φ̄j = jπ/p (j = 0, ..., p − 1).
To have a good approximation for the Φ̄-integral in (4.8) we need the condition (see [5]) :

p > 2s̄maxumax.

This method presents the advantage (with respect to a direct use of a double FFT) that we only need a great
number of points in the computation of the radial integral over the interval (] −∞, +∞[). The computation
of the angle integral over [0, π) uses only a few points.

5. Conclusions.

In this work, we have presented a method to obtain the 3D surface Green’s function. First, we have seen
how we may construct the spectral 3D Green’s function employing the Fahmy-Adler Method’s [2]. Afterwards,
we obtain the 3D spatial Green function on the surface Γ as the Fourier transform of the spectral 3D Green’s
function. We analyse separately the singularities and the behavior at infinity from the regular part. We
use semi-analytical techniques for the singularities and the behavior at infinity, and a FFT technique for the
regular part.
Here, important changes with respect to the 2D case appears. We observe that is necessary to use numerical
methods to compute the spatial contributions of the singularities and the behavior at infinity.
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[9] J. Ribbe, “On the coupling of integral equations and finite elements / Fourier modes for the simulation of piezoelec-

tric surface acoustic wave components”, PhD Thesis, Centre de Mathématiques Appliquées, École Polytechnique,
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