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The integrals in Gradshteyn and Ryzhik. Part 1:
A family of logarithmic integrals

Victor H. Moll

Abstract. We present the evaluation of a family of logarithmic integrals. This
provides a unified proof of several formulas in the classical table of integrals by I.

S. Gradshteyn and I. M. Rhyzik.

1. Introduction

The values of many definite integrals have been compiled in the classical Table of
Integrals, Series and Products by I. S. Gradshteyn and I. M. Rhyzik [3]. The table is
organized like a phonebook: integrals that look similar are place close together. For
example, 4.229.4 gives

(1.1) ln
(

ln
1
x

) (
ln

1
x

)u−1

dx = ψ(µ)Γ(µ),

for µ > 0, and 4.229.7 states that

(1.2)
∫ π/2

π/4

ln ln tanx dx =
π

2
ln

{
Γ

(
3
4

)
Γ

(
1
4

) √2π

}
.

In spite of a large amount of work in the development of this table, the latest version
of [3] still contains some typos. For example, the exponent u in (1.1) should be µ. A
list of errors and typos can be found in

http://www.mathtable.com/errata/gr6_errata.pdf

The fact that two integrals are close in the table is not a reflection of the difficulty
involved in their evaluation. Indeed, the formula (1.1) can be established by the change
of variables v = − lnx followed by differentiating the classical gamma function

(1.3) Γ(µ) :=
∫ ∞

0

tµ−1e−t dt, µ > 0,
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with respect to the parameter µ. The function ψ(µ) in (1.1) is simply the logarithmic
derivative of Γ(µ) and the formula has been checked. The situation is quite different
for (1.2). This formula is the subject of the lovely paper [6] in which the author
uses Analytic Number Theory to check (1.2). The ingredients of the proof are quite
formidable: the author shows that

(1.4)
∫ π/2

π/4

ln ln tanx dx =
d

ds
Γ(s)L(s) at s = 1,

where

(1.5) L(s) = 1− 1
3s

+
1
5s
− 1

7s
+ · · ·

is the Dirichlet L-function. The computation of (1.4) is done in terms of the Hurwitz
zeta function

(1.6) ζ(q, s) =
∞∑

n=0

1
(n+ q)s

,

defined for 0 < q < 1 and s > 1. The function ζ(q, s) can be analytically continued to
the whole plane with only a simple pole at s = 1 using the integral representation

(1.7) ζ(q, s) =
1

Γ(s)

∫ ∞

0

e−qtts−1

1− e−t
dt.

The relation with the L-functions is provided by employing

(1.8) L(s) = 2−2s
(
ζ(s, 1

4 )− ζ(s, 3
4 )

)
.

The functional equation

(1.9) L(1− s) =
(

2
π

)s

sin
πs

2
Γ(s)L(s),

and Lerch’s identity

(1.10) ζ ′(0, a) = log
Γ(a)√

2π
,

complete the evaluation. More information about these functions can be found in [7].

In the introduction to [2] we expressed the desire to establish all the formulas in
[3]. This is a nearly impossible task as was also noted by a (not so) favorable review
given in [5]. This is the first of a series of papers where we present some of these
evaluations.

We consider here the family

(1.11) fn(a) =
∫ ∞

0

lnn−1 x dx

(x− 1)(x+ a)
, for n > 2 and a > 0.

Special examples of fn appear in [3]. The reader will find

(1.12) f2(a) =
π2 + ln2 a

2(1 + a)
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as formula 4.232.3 and

(1.13) f3(a) =
ln a (π2 + ln2 a)

3(1 + a)

as formula 4.261.4. In later sections the persistent reader will find

f4(a) =
(π2 + ln2 a)2

4(1 + a)

f5(a) =
ln a (π2 + ln2 a)(7π2 + 3 ln2 a)

15(1 + a)

f6(a) =
(π2 + ln2 a)2(3π2 + ln2 a)

6(1 + a)

as 4.262.3, 4.263.1 and 4.264.3 respectively.
These formulas suggest that

(1.14) hn(b) := fn(a)× (1 + a)

is a polynomial in the variable b = ln a. The relatively elementary evaluation of fn(a)
discussed here identifies this polynomial.

There are several classical results that are stated without proof. The reader will
find them in [1] and [2].

2. The evaluation

The expression (1.11) for fn(a) can be written as

fn(a) =
∫ 1

0

lnn−1 x dx

(x− 1)(x+ a)
+

∫ ∞

1

lnn−1 x dx

(x− 1)(x+ a)
,

and the transformation t = 1/x in the second integral yields

fn(a) =
∫ 1

0

lnn−1 x dx

(x− 1)(x+ a)
+ (−1)n

∫ 1

0

lnn−1 x dx

(x− 1)(1 + ax)
.

The partial decomposition
1

(x− 1)(x+ a)
=

1
1 + a

1
x− 1

− 1
1 + a

1
x+ a

yields the representation

fn(a) =
1− (−1)n−1

1 + a

∫ 1

0

lnn−1 x dx

x− 1
− 1

1 + a

∫ 1

0

lnn−1 x dx

x+ a
+(−1)n−1 a

1 + a

∫ 1

0

lnn−1 x dx

1 + ax
.

The evaluation of these integrals require the polylogarithm function defined by

(2.1) Lim(x) :=
∞∑

k=1

xk

km
.

This function is sometimes denoted by PolyLog[m,x]. Detailed information about the
polylogarithm functions appears in [4].
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Proposition 2.1. For n ∈ N, n > 2 and a > 1 we have

lnn−1 x dx

x− 1
= (−1)n(n− 1)! ζ(n),

lnn−1 x dx

x+ a
= (−1)n(n− 1)! Lin(−1/a),

lnn−1 x dx

1 + ax
= (−1)n (n− 1)!

a
Lin(−a).

Proof. Simply expand the integrand in a geometric series. �

Corollary 2.2. The integral fn(a) is given by

fn(a) =
(−1)n(n− 1)!

1 + a

{[
(1− (−1)n−1

]
ζ(n)− Lin

(
− 1

a

)
+ (−1)n−1Lin(−a)

}
.

The reduction of the previous expression requires the identity

(2.2) Liν(z) =
(2π)ν

Γ(ν)
eπiν/2ζ

(
1− ν,

log(−z)
2πi

+
1
2

)
− eπiνLiν(−1/z).

This transformation for the polylogarithm function appears in
http://functions.wolfram.com/10.08.17.0007.01

In the special case z = −a and ν = n, with n ∈ N, n > 2, we obtain

(2.3) (−1)n−1Lin(−a)− Lin(−1/a) =
(2π)n

n! in
Bn

(
log a
2πi

+
1
2

)
,

where Bn(z) is the Bernoulli polynomial of order n. This family of polynomials is
defined by their exponential generating function

(2.4)
teqt

et − 1
=

∞∑
k=0

Bk(q)
tk

k!
.

The classical identity

(2.5) ζ(1− k, q) = −1
k
Bk(q), for k ∈ N

is used in (2.3). Therefore the result in Corollary 2.2 can be written as:

Corollary 2.3. The integral fn(a) is given by

fn(a) =
(−1)n

1 + a
(n− 1)! [1 + (−1)n] ζ(n) +

(2πi)n

n(1 + a)
Bn

(
log a
2πi

+
1
2

)
.

We now proceed to simplify this representation. The Bernoulli polynomials satisfy
the addition theorem

(2.6) Bn(x+ y) =
n∑

j=0

(
n

j

)
Bj(x)yn−j ,
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and the reflection formula

(2.7) Bn( 1
2 − x) = (−1)nBn

(
1
2 + x

)
.

In particular Bn( 1
2 ) = 0 if n is odd. For n even, one has

(2.8) Bn( 1
2 ) = (21−n − 1)Bn,

where Bn is the Bernoulli number Bn(0). Thus, the last term in Corollary 2.3 becomes

Bn

(
log a
2πi

+
1
2

)
=
bn/2c∑
j=0

(
n

2j

)
(21−2j − 1)B2j

(
log a
2πi

)n−2j

.

We have completed the proof of the following closed-form formula for fn(a):

Theorem 2.4. The integral fn(a) is given by

fn(a) =
(−1)n (n− 1)!

1 + a
[1 + (−1)n] ζ(n) +

+
1

n(1 + a)

bn/2c∑
j=0

(
n

2j

)
(22j − 2)(−1)j−1B2jπ

2j(log a)n−2j .

Observe that if n is odd, the first term vanishes and there is no contribution of
the odd zeta values. For n even, the first term provides a rational multiple of πn in
view of Euler’s representation of the even zeta values

(2.9) ζ(2m) =
(−1)m+1 (2π)2mB2m

2(2m)!
.

The polynomial hn predicted in (1.14) can now be read directly from this expres-
sion for the integral fn. Observe that hn has positive coefficients because the Bernoulli
numbers satisfy (−1)j−1B2j > 0.

Note. The change of variables t = lnx converts hn(a) into the form

(2.10) hn(a) =
tn−1 dt

(1− e−t)(a+ et)
.

The integrals hn(a) for n = 2, · · · , 5 appear in [3] as 3.419.2, · · · ,3.419.6. The latest
edition has an error in the expression for this last value.

Conclusions. We have provided an evaluation of the integral

(2.11) fn(a) :=
∫ ∞

0

lnn−1 x dx

(x− 1)(x+ a)
,

given by

n(1 + a)fn(a) = (−1)nn! [1 + (−1)n] ζ(n)(2.12)

+
bn
2 c∑

j=0

(
n

2j

)
(22j − 2)(−1)j−1B2jπ

2j(log a)n−2j .
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Symbolic calculation. We now describe our attempts to evaluate the integral fn(a)
using Mathematica 5.2. For a specific value of n, Mathematica is capable of producing
the result in (2.12). The integral is returned unevaluated if n is given as a parameter.
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