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Wallis m-integrals and their properties
Veselin Jungié¢?, Andriana Burazin® and Miroslav Lovri¢®

ABSTRACT. This paper investigates asymptotic behaviour of the m-Wallis inte-
grals

s

V[/'(m,k):/‘2 a™ cos® & dz, m e NU {0}, k € N.
0

1. Introduction

The purpose of this note is to establish several properties of the family of
integrals

W(m, k) = /2 ™ cos® x dz, m € NU{0}, k €N
0
In 2007 Tewodros Amdeberhan, Luis A. Medina, and Victor H. Moll [1] obtained
many interesting properties of the whole family as well as of its subfamilies de-
termined by fixing the value of one of the parameters. Those properties include
recurrence formulae, for & > 3,
k-1 k-1 1
=2 —2 Lk)=—W(Lk-2)— —
W(0.k) = =W (0,k = 2), W(1, k) = ——W(Lk=2) - ,
and, for m > 2, and k > 3,
k—1 m(m —
W(m, k) = TW(m7 k—2)— 2
A straightforward application of integration by parts yields to each of the above
recurrences.

Yy im = 2.5).

The members of the subfamily W (0, k) = W), = / * cost zdz, k € N, are the well-

0
known Wallis integrals. These integrals and their properties have been studied
over a long period of time [2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14]. Here are three

—1
properties that easily follow from the recurrence W;, = kTWk_Q.
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PROPOSITION 1.1 ([1, 11, 14]). Let {W}, : k € N} be the family of the Wallis
integrals. Then:

(2'n—1!?” I =l (2:) if k=2n

(1) Wy = 823" 52n .
et DI = 2t (7)) ifk=2n+1
o Wi
@ s =t

(3) kW Wy1 = 2
From Proposition 1.1 it follows that for large values of &,
EW2 ~ kWi Wi ~ g
In other words:

PROPOSITION 1.2. Let {Wy : k € N} be the family of the Wallis integrals.
Then:

(1) For large values of k, Wy, ~ 1/%.
k—o0
In this note we show that, for a fixed m > 1, the family {W(m, k) : £ > 1} has
similar properties. Namely, in Section 2 we prove the following two theorems:

THEOREM 1.1. For all m > 1, klim W(m, k) =0.
—00

THEOREM 1.2. Forall m > 1, lim w =1.
k—o0 Wk(m, k)

In Section 3 we prove an analog to the first statement in Proposition 1.2:

THEOREM 1.3. For large values of k,

@m)! [T (2m + 1)!

Hence the following definition:

DEFINITION 1.1. For a fixed m > 1, the elements of the family {W (m, k) : k €
N} are called the Wallis m-integrals.

In Section 4 we prove:

THEOREM 1.4. Forany m > 0and z € [-1,1)
3

tm

W (m, k)z* = —dt
I;) (m, k) /0 1 —zcost

In addition, for m > 2,

[ME]

tm

k) = — dt
ZW(m, ) /0 1 — cost

k=0
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2. Two convergent sequences of Wallis m-integrals

We observe that Propositions 1.1 and 1.2 establish that both the sequence of
Wallis integrals {IW} }ren and the sequence of the ratios of the consecutive Wallis
Wit

) ) Wi ) ken
Wallis m-integrals converge too.

integrals

converge. We prove that corresponding sequences of the

PROOF OF THEOREM 1.1. Note that, forany k,m > land z € (0, g) , ™ cosk x>
0. Hence,

3 m 5 m
0<W(im, k)= /2 ™ cost x dx < (g) /2 cosk ¢ dx = (g) Wi.
0 0

Since klim Wy = 0 it follows, by the Squeeze Theorem, that klim W(m, k) =0, for
—00 —00
any m > 1. U

We note that, for k > 1,

0< W(m,k+1) fog ™ cosPH xdx B fog 2™ cosk x cos wdxw
W(m, k) fo% ™ cosk zdx fog ™ cosk wdx
f0% 2™ cost xdx
< =1.

Jo? @™ cosk xdx

It follows that, for a fixed m > 0, the sequence {W (m, k)}ren is monotone decreas-
W(m,k+1)

ing and that the sequence { W, k)

} is bounded from above by 1.
keN

Our first step in establishing Theorem 1.2 is to find, for m > 1, the limit of the

sequence { W(m, k)2) } . To do so we will use the following lemma:
k>3

W(m, k —
y

y =cotx

LEMMA 2.1. Let a > 0 and let x, be the
unique solution of the equation cotx = ax in

the interval (0, g) Then lim vax, = 1.

a— o0

Yy = axr

PROOF. Observe that cosz, = ax, sinz, and lim z, = 0.
a—r 00
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w(Ge) = () ()
512:‘1 . <a:c3 cos < > + g - sin < a>> ;

sin x,

li 1 li li L 1, and li i L
1m S — — Xg = 11m = 11m S e =1, 1m q SN | —= =
a— 00 cos \/a v a—00  Tg a— 00 cos \/a a— 00 v S \/E
0, it follows that lim az? = 1.
a—r o0
Since ¢ > 0 and z, > 0, we conclude that 1Lm Vaxrg = 1. O

Since the recurrence formulae for W (1, k) and W (m, k), m > 2, differ, when dis-
W(m, k)

cussing the limit of the sequence {W(ka)

} we distinguish two cases:
k>3

m=1andm > 2.
To proceed, we need two additional lemmas:

1
LEMMA 2.2. lim —w——~ =0.
koo KEW (1, k)

PROOF. For k > 1, let gr(z) = z cos® . Since, for k > 2

(1) - T D o1 (L
gk(k = /2 cos 4+k cos A >0,

. .. . . 1 .
by Lemma 2.1, the function g is increasing on the interval [k" ak] , where « is

the unique solution of the equation cot x = kz in the interval (0, g) Hence, for
k>2,

s

0< <ak_llc>liCOSk <;> = \ %cosk (;) dxg/ozxcoskxdx:W(l,k).

This, together with Lemma 2.1, implies that, for large k&,

1 1 _ 1 K2
R2W(1,k) ~ k2 (g — 1) tcosk (%) K (kay —1)cosk (1)
1 1 1

~ =

(ke et ()~ VE—1 o (1)
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1
Since lim cos” x) =1, it follows that

Tr—r00
1 1 1
0< lim —= < 1i : =0.
SN REWE R SO VE o1 cosh (1)
1
By the Squeeze Theorem, hm W) =0. O

LEMMA 2.3. For any m > 2,
lim 1 W(m—2,k)
k—oo k2 W(m k— 2)
PRrROOF. Let m > 2 be fixed. Observe that for any & >

=0.

W(m —2,k) f(f 2™ % cos® x d foi 2™ 2 cost 2 x cos? z dw

0 =% = T
W(m,k—=2) [ gmcosk=2 g da Jo? ™ cosk2 1 dx
- fog a2 cos" 2 dr  W(m -2,k —2)
= fog ™ cosk—2 ¢ dx W(m, k— 2)

W(im—2,k—2
Hence, it is enough to prove that hn;O = W =0.

Let fox(z) = 2™ coshz, z € {0, 5] Then f;, ,(z) = 2™ 'cos* 'z - (mcosx —
kxsinz). Since, the equation cotz = —z has a unique solution in the inter-

val (0, g), the function f,, , has a unique critical number «,, ; € (0, g) Since

fm £(0) = fnk (E) = 0 and since f, x(z) > 0 otherwise, it follows that f,, r(m k) =

ik cos® a,, i, is the absolute maximum value of f,, ;.

It follows that

:1

2 k
m — 2, k) / Jm—2,k( <3 Q5 COS" Q2. s -

We observe that, since

k
) > —, the number a,,,_s 1, as the unique solution of
m

the equation cotx = s is smaller than the number «,, i, the unique solu-
m_

tion of the equation cot x = EI' This fact implies that f,, x(m—2.%) < frmk(Cm. k).
It follows that
Ok
0 < (am,k - am—Q,k) : fm,k(am—Q,k) = / fm,k(am—Q,k) dz

m—2,k

/0 Y fn(@) dz = W(m, k).
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Therefore, using the fact that f, x(m—2.x) = afr_,  cos* ok,

m—2 k
W(m -2, k‘) % C Qo f COST Om—_2k s
0< < = 5

W(m, k) = (Qmk = Qm2k) - Qo 0P ok 2(Qn g — Qmook) 02, oy

By Lemma 2.1, for large &

m — 2 m
OUm—2.k ~ 2 and Qm e ™ ?

It follows that for large k,

1 1 k3
- : 2 - m m— m— - - . - - )
(am,k am_ka) am—2,k (1 /? — 4/ 72) . T2 (m 2) (\/TH m 2)
Finally,
.1 W(m-—2k) .1 ™
< lim S—————-< ol
0 Koo k2 W(m, k) foo k2 2(Qm g — Cm—2.k) - O‘?n—z,k
. 1 ks s . 1
= lim — = lim — =0.
koo 12 2(m — 2) - (v — Vm—2)  2(m—2) - (v/m — vm = 2) koo vk
. 1 Wim—2,k)
By the Squeeze Theorem, for any m > 2, klingo Wk = 0. O
) W (m, k)
1. =1, —— =1
PROPOSITION 2.1. Forany m > 1 klirgo Wim k—2) 1
E—1 1.
PROOF. If m = 1 then from W(l,k) = TW(l’k —-2) — = it follows, by
Lemma 2.2,
limM—lm k_l— ! =1
k—oo W(l,k—2)  k—oo \ k KW (1,k—-2))
k-1 m(m — 1) .
For m > 2, from W(m, k) = TW(mJ{ -2) — TW(m — 2, k) it follows
that
Wim,k) k—1 m(m—1)W(m—2k)
Wm,k—2)  k k2 Wi(m,k—2)
W(m, k)

By Lemma 2.3, lim =1.

k—o0 W(m, k— 2)
U

PROOF OF THEOREM 1.2. Since the sequence {W(m, k)}ren is monotone de-

creasing, it follows that, for £ > 1, W(m,k +2) < W(m,k + 1) < W(m,k). In
particular this, together with Proposition 2.1, implies that,

1= lim Wim k+2) < lim Wimk+1)

S <1.
k—o00 I/V(TTL7 k) k—o00 W(m7 k)
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Therefore, lim M =1.

3. Wallis m-integrals and large values of &

In this section we present relatively simple functions that approximate the
Wallis m-integrals W (m, k) for large values of k. Our main tool will be the recur-
rence formulae for W(m, k), m,k > 1.

We distinguish two cases based on the parity of the parameter m.

PROPOSITION 3.1. For m > 1 and a large k € N,

@2m)! |«

k™ 2k

W(2m,k) ~
and consequently
. 1 I
lim k™2 W (2m, k) = (2m)!\/7.
k—o0 2

PROOF. Recall that by Proposition 2.1, for large k € N, W (2m, k) ~ W(2m, k—
2). This together with the recurrence

1 om(2m — 1
W (2m, k) = kTW(Qm, k—2)— %W@m —2.k)
implies that, for large k&,
W (2m, k) ~ %W(Qm k) — %W(?m —2k).

Hence, for large values of &,

2m(2m — 1) 2m(2m — 1) (2m — 2)(2m — 3)

Wem.k) ~ SRS W(2m = 2.k) ~ . a W (2m — 4, k)
(2m)!
~Y km k .
From W, it follows that W (2m, k) ~ 7t [T
Y\ 2k i ko \ 2k

Consequently,

lim k™3 W (2m, k) = (2m)!\ﬁ .
k—o0 2
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MAPLE confirms the conclusion of Proposition 3.1 and provides an additional
insight what happens when 2m and k change:

Gl /3 — W (2m, k)
| k=10 \ k =100 \ k = 1000
2m =2 0.04422015870 0.001268861966 0.00003968277699
2m =8 1.596101060 0.00005041239505 | 1.593886245 - 10~°
2m =14 3455.160227 0.0001092616476 | 3.455155769 - 10~ 12
2m = 20 || 9.642386939 - 107 | 0.003049190480 | 9.642386937 - 10~

PROPOSITION 3.2. For m > 1 and a large k € N,

(2m+1)!

W(2m+ 17k) ~ km+1

and consequently

Jim Em W (2m 41, k) = (2m + 1)!.
—00

PROOF. Recall that by Proposition 2.1, for large k € N, W (2m+1,k) ~ W(2m+
1,k — 2). This together with the recurrence

W@2m+1,k) = %W@m F1k-2) - WJ}MW(M ~ 1K)

implies that, for large k,

(2m + 1)(2m)

k-1
W (2m + 1, k) ~ =W (2m + 1, k) - =

wW(2m —1,k),
which implies

(2m+1)(2m) 2m+1)(2m) (2m —1)(2m — 2)

wWe2em+1,k) ~ fW@m —1,k)~ - - W (2m — 3, k)
!
~ NMW(L/{).
km
. k—1 1

Since, from W (1, k) = TW(I, k_2)_ﬁ and, for large k, W(1,k) ~ W(1,k—2),

1 2 !
it follows that V' (1,k) ~ .. Hence, W (2m + 1, k) ~ %

Consequently,

lim k™MW (©2m 4+ 1,k) = (2m + 1)!.

k—oc0
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MAPLE confirms the conclusion of Proposition 3.2 and provides an additional
insight what happens when 2m + 1 and k change:

Gt W(2m + 1,k)
| k=10 | k =100 | k = 1000
2m +1=3 [ 0.04354944490 [ 0.0004039522813 | 4.003995203 - 10~°
2m+1=9 3.627293538 | 0.00003625323313 | 3.624998186 - 10~ 1°
2m+1=15  13076.74293 | 0.0001307673859 | 1.307673738- 10
2m +1 =21 | 5109094217 - 105 | 0.005109094217 | 5.109094217 - 10~

We observe that the claim of Theorem 1.3 summarizes Propositions 3.1 and 3.2.

4. Sums of Wallis m-integrals

z m+1
For m > 1 we define W(m,0) = /0 xMdx = m
We note that for x € (—1,1) and ¢ € [0, g}, 0 < |zcost| < |z| < 1. It follows that
. . = k k ™
the geometric series Zx cos” t converges for all z € (—1,1) and ¢t € [07 5} and
k=0
that
- 1
Z 2k eosht = ————.
1 —xcost

k=0

PROOF OF THEOREM 1.4. Form > 0and z € (—1,1),

£ t £ ek - £ k k
—_— = tm t]dt= tm tdt
/0 L /0 S ot cos Z/o cost tdt | @

k=0 k=0
o0
= W (m, k)z* .
k=0

Since klim W(m,k) =0and 0 < W(m, k+1) < W(m, k), by the Alternating Series
c— 00

Test, the series Z(—l)k W(m, k) is convergent. By Abel’s Theorem [12]
k=0

S (=)W (m, k) = /O T ooy

k=0
We observe that by Theorem 1.3, for large &,

2m)! [«

k’m—l %

(2m + 1)!

and kW (©2m + 1,k) ~ o

kW (2m, k) ~
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It follows that, for m > 2, klim kW (m, k) = 0. By Tauber’s criterion [7, 15], the
—00

series Z W (m, k) is convergent. By Abel’s Theorem, for m > 2,
k=0

t’nl

S W(m, k) :/0 L
k=0
O

REMARK 4. 1 We note that Propos1t10ns 1.1 and 3.2, together Wlth the fact

that the series Z \f and Z v diverge, imply that both series ZW (0,k)
k=0

Z W;, and Z W(1,k) diverge. In the view of Theorem 1.4, this is in the agree-
k=0 k=0

ment with the fact that neither the integral / nor the integral /

1_70,5 m

exists.

5. Conclusion

In this article we have demonstrated that, for m > 1, the Wallis m-integrals
posses properties that are analogue to some of of the bas1c properties of the Wallis
integrals.This extends the list of properties of the Wallis m-integrals established
by Amdeberhan, Medina, and Moll in [1].

To underline the connection between the Wallis m-integrals and the Wallis inte-
grals, we reformulate part of one of, in our view, main results obtained in [1].

THEOREM 5.1 ([1], Theorem 2.11). For m,k € N,

1%
W(m,2k) = Z awz7k7j77m+1_2j + Godd,m * G ks
§=0
where
(-1 Ym! Wy Z 1

Gmkd = Tom(m + 1 — 2j)!

1< < <ij<k L J

dodd,m s Kronecker’s delta function at the odd integers, and

. ()% Jomimy, O (2 + D Wajir
0= COE DI e
1<K <im<h 1T =1
A similar expression is established for W (m, 2k+1). In other words, Amdeberhan,
Medina, and Moll showed that W (m, k) may be expressed as polynomial in 7 with
rational coefficients.
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In particular they showed that

2 .

k
W,
W(1,2k) = -2 . % }:
71'

and
r @)
I/I/v(l7 2I€ + 1) = W2k+1 . 5 Z T—'—l)

Amdeberhan, Medina, and Moll [1] note “a class1ca1 result:”

oo 22J 71_ e} (27)

z:: 5222%(2}“)'

k-1

We observe that the recurrence W (2, k) =

2
the initial conditions W (2,1) = % —2and W(2,0) = g, gives

2
W(2,k—2)— ﬁWk, together with

w2 1
W(2,2k) =2Wsy - | — —
(7 ) 2k 24 ;(272

and
T b 1
W(2,2k +1) = 2Wap1 - E (TEE

Recall that

=1 2 1 2
—— = — and —_— =
j; (25)? 24 ; (25 +1)2 8

We wonder for how long, if at all, this pattern continues, i.e., if, for some m > 2,
W(m,2k) = ¢Way - Ry, and/or W(m,2k + 1) = dWagy1 - Sk, where ¢ and d are
constants and R, and S, are remainders of two series that each sums to a fraction
of a power of .

Finally, we mention that the study of the Wallis integrals is closely related to the
Gamma and Betta functions [8, 13]. We wonder if there is a relation between the
Wallis m-integrals and some of the special functions.
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