SCIENTIA Series A: Mathematical Sciences, Vol. 14 (2007), 25–30 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 0716-8446 © Universidad Técnica Federico Santa María 2007

Characterizations of spaces with locally countable weak bases

Shengxiang Xia

ABSTRACT. In this paper, by 1-sequence-covering mappings, the relations between metric spaces and spaces with (σ -) locally countable weak bases are established. These are answers to Alexandroff's some problems.

1. Introduction

In 1961, Alexandroff [1] conceived that the relations among various classes of topological spaces could be established by means of various mappings. A central question of Alexandoff's idea is that the relations between various topological spaces and metric spaces are established by means of various mappings. In the paper [5], S. Lin introduced metrizable stratified strong s-mappings(i.e. msss-mappings), by which the relations between metric spaces and spaces with σ -locally countable networks, or spaces with σ -locally countable bases were established. In this paper, we will establish the relations between metric spaces and spaces with $(\sigma$ -) locally countable weak bases. These are answers to Alexandroff's some problems.

In this paper, all spaces are regular T_1 , and all mappings are continuous and surjective. \mathbb{N} denotes the set of all natural numbers. p_i denotes the projection from the product space $\prod_{n \in \mathbb{N}} X_n$ to X_i .

2. Spaces with locally countable weak bases

DEFINITION 2.1. [10] A collection \mathcal{B} of subsets of a space X is called a weak base for X, if for each $x \in X$, there exists $\mathcal{B}_x \subset \mathcal{B}$ such that : (1) $\mathcal{B} = \bigcup \{\mathcal{B}_x : x \in X\}$; (2) $x \in \cap \mathcal{B}_x$; (3) if $U, V \in \mathcal{B}_x$, then $U \cap V \in \mathcal{B}_x$; (4) a subset G of X is open if and only if for every $x \in G$ there exists a $B \in \mathcal{B}_x$ such that $B \subset G$. If each \mathcal{B}_x is countable then X is called a g-first countable space. An element of \mathcal{B}_x is called a weak neighborhood of x.

25

²⁰⁰⁰ Mathematics Subject Classification. Primary 54C10, 54D65, 54E40.

Key words and phrases. weak base, cs-network, 1-sequence-covering mapping, msss-mapping , ss-mapping .

DEFINITION 2.2. [11] A mapping $f : X \to Y$ is called a sequence-covering if every convergent sequence (including its limit) in Y is the image of a convergent sequence in X under f.

DEFINITION 2.3. [6] A mapping $f: X \to Y$ is called 1-sequence-covering if for each $y \in Y$, there exists $x \in f^{-1}(y)$ such that if $y_n \to y$ in Y, then there is $x_n \in f^{-1}(y_n)$ with $x_n \to x$.

It is easy to see that a 1-sequence-covering mapping is a sequence-covering mapping.

DEFINITION 2.4. [5] A mapping $f : X \to Y$ is called an ss-mapping if for every $y \in Y$, there exists an open neighborhood V of y such that $f^{-1}(V)$ is a separable subspace of X.

DEFINITION 2.5. Let X be a space, and let \mathcal{P} be a cover of X. \mathcal{P} is called a cs-network [4] if whenever $\{x_n\}$ is a sequence converging to a point $x \in X$ and U is a neighborhood of x, then $\{x\} \cup \{x_n : n \ge m\} \subset P \subset U$ for some $m \in \mathbb{N}$ and some $P \in \mathcal{P}$. \mathcal{P} is called a cs*-network [3] if whenever $\{x_n\}$ is a sequence converging to a point $x \in X$ and U is a neighborhood of x, then there exists $P \in \mathcal{P}$ such that $x \in P \subset U$ and P contains a subsequence of $\{x_n\}$.

DEFINITION 2.6. [2] For a space $X, P \subset X$ is called a sequential neighborhood of x in X if $x_n \to x$ in X, then there exists $k \in \mathbb{N}$ such that $\{x\} \cup \{x_n : n \ge k\} \subset P$; P is called a sequential open set of X if P is a sequential neighborhood of any point $x \in P$. X is called a sequential space if each sequential open subset of X is open.

LEMMA 2.7. [6] If B_x is a weak neighborhood of x in a space X, then B_x is a sequential neighborhood of x.

LEMMA 2.8. [6] Let $f : X \to Y$ be a mapping. If $\{B_n : n \in \mathbb{N}\}$ is a decreasing network of some point x and each $f(B_n)$ is a sequential neighborhood of f(x) in Y, supposed $y_n \to f(x)$, then there exists $x_n \in f^{-1}(y_n)$ such that $x_n \to x$ in X.

PROOF. For $n \in \mathbb{N}$, since $f(B_n)$ is a sequential neighborhood of f(x), there is $i(n) \in \mathbb{N}$ such that $y_i \in f(B_n)$ whenever $i \ge i(n)$. Hence $f^{-1}(y_i) \cap B_n \ne \phi$. We may assume that 1 < i(n) < i(n+1). For $j \in \mathbb{N}$, set

$$x_j \in \begin{cases} f^{-1}(y_j), & j < i(1) \\ f^{-1}(y_j) \cap B_n, & i(n) \le j < i(n+1), n \in \mathbb{N} \end{cases}$$

then $x_j \in f^{-1}(y_j)$, and $x_j \to x$ in X.

THEOREM 2.9. For a space X, the following are equivalent: (1) X has a locally countable weak base;

(2) X is g-first countable and has a locally countable k-network;

(3) X is g-first countable and has a locally countable cs-network;

(4) X is g-first countable and has a locally countable cs*-network;

(5) X is a 1-sequence-covering quotient ss-image of a metric space.

26

PROOF. (1) \iff (2) follows the Theorem 2.1 [8].

 $(1) \iff (3)$ follows the proof of the Lemma 7 [7].

 $(2) \iff (4)$ follows the Lemma 1 [9].

 $(1) \Longrightarrow (5)$. Let $\mathcal{P} = \{P_{\alpha} : \alpha \in A\}$ be a locally countable weak base of X. Suppose \mathcal{P} is closed under finite intersections. Let A_n be the set A with discrete topology for each $n \in \mathbb{N}$. Set

 $M = \{ \alpha = (\alpha_n) \in \prod_{n \in \mathbb{N}} A_n : \{ P_{\alpha_n} : n \in \mathbb{N} \}$ forms a network at some point $x(\alpha)$ in $X \}$, and give M the subspace topology induced from the usual product topology of the discrete spaces A_n , then M is a metric space. We define $f : M \to X$ by $f(\alpha) = x(\alpha)$.

1) f is a continuous and surjective mapping. Since \mathcal{P} is a point countable weak base of X, it is easy to check that f is continuous and surjective.

2) f is an ss-mapping. For each $x \in X$, since \mathcal{P} is locally countable, there exists a neighborhood V of x in X such that $V \cap P \neq \phi$ for only countable many $P \in \mathcal{P}$. So $f^{-1}(V)$ is a separable subspace of M, f is an ss-mapping.

3) f is a 1-sequence-covering mapping. For $x \in X$, let $\{P_{\alpha_n} : n \in \mathbb{N}\} \subset \mathcal{P}$ be the local weak base of x in X, set $\delta = (\alpha_n) \in \prod_{n \in \mathbb{N}} A_n$, then $\delta \in f^{-1}(x)$. For $n \in \mathbb{N}$, set

$$B_n = \{ (\beta_i) \in M : \beta_i = \alpha_i \text{ when } i \leq n \},\$$

then $\{B_n : n \in \mathbb{N}\}$ is a local decreasing base of δ in M, and $f(B_n) = \bigcap_{i \leq n} P_{\alpha_i}$. In fact, let $\beta = (\beta_i) \in B_n$, then $f(\beta) = \bigcap_{i \in \mathbb{N}} P_{\beta_i} \subset \bigcap_{i \leq n} P_{\beta_i}$, so $f(B_n) \subset \bigcap_{i \leq n} P_{\alpha_i}$. Let $z \in \bigcap_{i \leq n} P_{\alpha_i}$, choosing a subcollection $\{P_{\gamma_i} : i \in \mathbb{N}\}$ of \mathcal{P} such that $\gamma_i = \alpha_i$ when $i \leq n$, and $\{P_{\gamma_i} : i \in \mathbb{N}\}$ forms a network of z in X. Set $\gamma = (\gamma_i)$, then $\gamma \in B_n$ and $z = f(\gamma) \in f(B_n)$, so $\bigcap_{i \leq n} P_{\alpha_i} \subset f(B_n)$. Since $\{P_{\alpha_n} : n \in \mathbb{N}\} \subset \mathcal{P}$ be the local weak base of x in X, $f(B_n)$ is a sequential neighborhood by the Lemma 2.7. Suppose $x_j \to x$ in X, by the Lemma 2.8, there exist $\delta_j \in f^{-1}(x_j)$ and $\delta_j \to \delta$ in M, therefore f is a 1-sequence-covering mapping. Since X is g-first countable, X is a sequential space. By the Proposition 5 [11], f is a quotient mapping. (5) \Longrightarrow (1) Let M be a metric space and $f : M \to X$ be a 1-sequence-covering, quotient, ss-mapping. Suppose that \mathcal{B} be a σ - locally finite base of M. Since f is a ss-mapping,

ss-mapping. Suppose that \mathcal{B} be a σ - locally finite base of M. Since f is a ss-mapping, $f(\mathcal{B})$ is locally countable. For $x \in X$, there exists $\alpha_x \in f^{-1}(x)$ satisfying the Definition 2.3. Set

$$\mathcal{P}_x = \{ f(B) : \alpha_x \in B \in \mathcal{B} \}, \ \mathcal{P} = \bigcup \{ \mathcal{P}_x : x \in X \}.$$

Suppose that U be an open subset of X and $x \in U$, then there exists $\alpha_x \in f^{-1}(x) \subset f^{-1}(U)$. Since \mathcal{B} is a base of M, there is $B \in \mathcal{B}$ such that $\alpha_x \in B \subset f^{-1}(U)$, therefore

SHENGXIANG XIA

 $x \in f(B) \subset U, f(B) \in \mathcal{P}_x$. Inversely, Suppose that for each $x \in U$ there exists $f(B) \in \mathcal{P}_x$ such that $f(B) \subset U$. Let $x_n \to x$ in X, then there exist $\alpha_x \in f^{-1}(x)$ and $\alpha_{x_n} \in f^{-1}(x_n)$ such that $\alpha_{x_n} \to \alpha_x$ in M. Since $f(B) \in \mathcal{P}_x$ and $\alpha_x \in B \in \mathcal{B}$, $\{\alpha_{x_n}\}$ is eventually in B. Hence $\{x_n\}$ is eventually in $f(B) \subset U, U$ is sequential open. Since f is a quotient mapping, X is sequential. Therefore U is an open subset of X, \mathcal{P} satisfies (4) of the Definition 2.1. It is easy to check that \mathcal{P} satisfies (1), (2) and (3) of the Definition 2.1. Hence \mathcal{P} is a locally countable weak base.

3. Spaces with σ -locally countable weak bases

DEFINITION 3.1. [5] A mapping $f: X \to Y$ is called stratified strong s-mapping, if X is a subspace of a product space $\prod_{i \in \mathbb{N}} X_i$ and for each $y \in Y$, there exists a sequence $\langle V_i \rangle$ of open neighborhood of y in Y such that each $p_i f^{-1}(V_i)$ is a separable

 $\langle V_i \rangle$ of open neighborhood of y in Y such that each $p_i f^{-1}(V_i)$ is a separable subspace of X_i . If each X_i is a metric space, then f is called a metrizable stratified strong s-mapping, or an msss-mapping for short.

THEOREM 3.2. For a space X, the following are equivalent:

- (1) X has a σ -locally countable weak base;
- (2) X is g-first countable and has a σ -locally countable cs-network;
- (3) X is a 1-sequence-covering quotient msss-image of a metric space.

PROOF. (1) \iff (2) follows the proof of the Lemma 7 [7].

(1) \Longrightarrow (3). Let $\mathcal{P} = \bigcup_{i \in \mathbb{N}} \mathcal{P}_i$ be a σ -locally countable weak base of X, and $\mathcal{P}_x = \bigcup_{i \in \mathbb{N}} \mathcal{P}_{ix}$, $\mathcal{P}_{ix} \subset \mathcal{P}_i$. For $i \in \mathbb{N}, x \in X$, we may assume that $\mathcal{P}_{ix} \subset \mathcal{P}_{i+1x}$ and $X \in \mathcal{P}_i$. Set $\mathcal{P}_i = \{P_\alpha : \alpha \in A_i\}$. Set

 $M = \{ \alpha = (\alpha_n) \in \prod_{n \in \mathbb{N}} A_n : \{ P_{\alpha_n} : n \in \mathbb{N} \} \text{ forms a network at some point } x(\alpha) \text{ in } X \}$

}, and give M the subspace topology induced from the usual product topology of the discrete spaces A_n , then M is a metric space. We define $f: M \to X$ by $f(\alpha) = x(\alpha)$. 1) f is a continuous and surjective mapping. Since \mathcal{P} is a point countable weak base of X, it is easy to check that f is continuous and surjective.

2) f is a msss-mapping. For each $x \in X$, $i \in \mathbb{N}$, since \mathcal{P}_i is locally countable, there exists a neighborhood V_i of x in X such that $|\{\alpha \in A_i : P_\alpha \cap V_i \neq \phi| \leq \aleph_0$. Set $B_i = \{\alpha \in A_i : P_\alpha \cap V_i \neq \phi\}$, then $p_i f^{-1}(V_i) \subset B_i$, so $p_i f^{-1}(V_i)$ is a separable subspace of A_i . Hence f is an msss-mapping.

3) f is a 1-sequence-covering mapping. Since X is g-first countable, X is a sequential space. By the Proposition 5 [11], if f is a 1-sequence-covering mapping, then f is a quotient mapping. So we need only to prove f is a 1-sequence-covering mapping. For $x \in X$, as each \mathcal{P}_{ix} is countable, set

$$\mathcal{P}_{ix} = \{ P_{ij} : j \in \mathbb{N} \}, \ i \in \mathbb{N}.$$

For each $n \in \mathbb{N}$, by (3) of the Definition 2.1, there exists $k(n) \in \mathbb{N}$ and $P_n \in \mathcal{P}_{k(n)x}$ such that $P_n = \bigcap_{i,j \leq n} P_{ij}$. As $\mathcal{P}_{ix} \subset \mathcal{P}_{i+1x}$, we may assume $k(n) < k(n+1), n \in \mathbb{N}$. Set

$$P_{\alpha_i} = \begin{cases} P_{ii} & 1 \leq i \leq k(1) \\ P_n & k(n) \leq i < k(n+1), \ n \in \mathbb{N} \end{cases}$$

then $P_{\alpha_i} \in \mathcal{P}_{ix} \subset \mathcal{P}_i$ and $\{P_{\alpha_i} : i \in \mathbb{N}\}$ forms a network of the point x. Set $\gamma = (\alpha_i)$, then $\gamma \in M$ and $\gamma \in f^{-1}(x)$. For each $n \in \mathbb{N}$, set

$$B_n = \{ (\beta_i) \in M : \beta_i = \alpha_i \ when \ i \leq n \},\$$

then $\{B_n : n \in \mathbb{N}\}\$ is a local decreasing base of γ in M, and $f(B_n) = \bigcap_{i \leq n} P_{\alpha_i}$. By the Lemma 2.7, $f(B_n)$ is a sequential neighborhood of x. Suppose $x_j \to x$ in X, by the Lemma 2.8, there exist $\gamma_j \in f^{-1}(x_j)$ and $\gamma_j \to \gamma$ in M, therefore f is a 1-sequence-covering mapping.

(3) \Longrightarrow (1) Let M be a metric space and $f: M \to X$ be a 1-sequence-covering, quotient, msss-mapping, then there exists a sequence of metric spaces $\{X_i\}$ satisfying the Definition 3.1. For each $i \in \mathbb{N}$, X_i has a σ -locally finite base \mathcal{P}_i , set

$$\mathcal{B}_n = \{ M \cap (\bigcap_{j \leqslant n} p_j^{-1}(P)) : P \in \mathcal{P}_j, j \leqslant n \}, \ \mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n,$$

then \mathcal{B} is a base of M. Since f is a 1-sequence-covering mapping, $f(\mathcal{B})$ is a cs-network of X. For $x \in X$, there exists a sequence $\langle V_i \rangle$ of open neighborhood of x such that $p_i f^{-1}(V_i)$ is a separable subspace of X_i . For each $n \in \mathbb{N}$, set $V = \bigcap_{i \leq n} V_i$, then

 $|\{Q \in f(\mathcal{B}_n) : V \cap Q \neq \phi\}| \leq \aleph_0$. Therefore $f(\mathcal{B})$ is a σ -locally countable collections of X. For each $x \in X$, there exists $\alpha_x \in f^{-1}(x)$ satisfying the Definition 2.3. Set

$$\mathcal{P}_x = \{ f(B) : \alpha_x \in B \in \mathcal{B} \}, \ \mathcal{P} = \cup \{ \mathcal{P}_x : x \in X \}.$$

Suppose that U be an open subset of X and $x \in U$, then there exists $\alpha_x \in f^{-1}(x) \subset f^{-1}(U)$. Since \mathcal{B} is a base of M, there is a $B \in \mathcal{B}$ such that $\alpha_x \in B \subset f^{-1}(U)$, therefore $x \in f(B) \subset U$, $f(B) \in \mathcal{P}_x$. Inversely, suppose that for each $x \in U$ there exists $f(B) \in \mathcal{P}_x$ such that $f(B) \subset U$. Let $x_n \to x$ in X, then there exist $\alpha_x \in f^{-1}(x)$ and $\alpha_{x_n} \in f^{-1}(x_n)$ such that $\alpha_{x_n} \to \alpha_x$ in M. Since $f(B) \in \mathcal{P}_x$ and $\alpha_x \in B \in \mathcal{B}$, $\{\alpha_{x_n}\}$ is eventually in B. Hence $\{x_n\}$ is eventually in $f(B) \subset U$, U is sequential open. Since f is a quotient mapping, X is sequential. Therefore U is an open subset of X, \mathcal{P} satisfies (4) of the Definition 2.1. It is easy to check that \mathcal{P} satisfies (1), (2) and (3) of the Definition 2.1. Hence \mathcal{P} is a σ -locally countable weak base.

References

- 1. P. Alexandroff, On some results concerning topological spaces and thier continuous mappings, Proc. Symp. Gen. Top.(Prague, 1961), 41-54.
- 2. S.P. Franklin, Spaces in which sequences suffice, Fund. Math., 57(1965),107-115.
- 3. Z. Gao, ℵ-space is invariant under perfect mappings, Questions Answers in General Topology, 5(1987), 271-279.
- 4. J.A. Guthrie, A characterization of ℵ₀, General Topology Appl., 1(1971),105-110.
- S. Lin, Locally countable collections, locally finite collections and Alexandroff's problems, Acta Mathematica Sinica, 37(1994), 491-496.

SHENGXIANG XIA

- S. Lin, On sequence-covering s-mappings, Advances in Mathematics, 25(1996),548-551. (in Chinese)
- 7. S. Lin, Y. Tanaka, *Point-countable k-networks, closed maps, and related results*, Topology and its Applications, 59(1994), 79-86.
- 8. C. Liu, M. Dai, Spaces with a locally countable weak base, Math. Japonica, 41(1995), 261-267.
- 9. C. Liu, J. Song , *Locally countable mappings*, Q. A. in General Topology, 11(1993), 159167.
- 10. F. Siwiec, On defining a space by a weak base, Pacific J.Math., 52(1974), 233-245.
- P. L. Strong, Quotient and pseudo-open images of separable metric spaces, Proc. Amer. Math. Soci., 33(1972), 582-586.

Received 21 07 2006, revised 06 11 2006

College of Science, Shandong Jianzhu University, Jinan 250101 , P.R. China *E-mail address*: xias@sdjzu.edu.cn

30