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The integrals in Gradshteyn and Ryzhik.
Part 3: Combinations of logarithms and exponentials

Victor H. Moll

ABSTRACT. We present the evaluation of a family of exponential-logarithmic in-
tegrals. These have integrands of the form P(e!®,Inx) where P is a polynomial.
The examples presented here appear in sections 4.33, 4.34 and 4.35 in the classical
table of integrals by I. Gradshteyn and I. Ryzhik.

1. Introduction

This is the third in a series of papers dealing with the evaluation of definite
integrals in the table of Gradshteyn and Ryzhik [2]. We consider here problems of the
form

(1.1) /OOO e P(Inz) dx,

where ¢t > 0 is a parameter and P is a polynomial. In future work we deal with the
finite interval case

b
(1.2) / e P(Inz) du,
where a, b € R with a < b and t € R. The classical example

(1.3) / e *lnzdr = —,
0

where ~y is Euler’s constant is part of this family. The integrals of type (1.1) are linear
combinations of

(1.4) Jn(t) == /000 e (Inz)" dz.
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The values of these integrals are expressed in terms of the gamma function

(1.5) I'(s) = /OOO ¥ e " da

and its derivatives.

2. The evaluation

In this section we consider the value of J,(t) defined in (1.4). The change of
variables s = tx yields

(2.1) In(t) = n /000 e *(Ins—Int)" ds.

Expanding the power yields J,, as a linear combination of

(o)
(2.2) I, = / e (Inx)" de, 0<m<n.
0

An analytic expression for these integrals can be obtained directly from the rep-
resentation of the gamma function in (1.5).

Proposition 2.1. For n € N we have

(2.3) /OOO (Inz)" x5 te ™ dx = (C;i)n I'(s).

In particular
(2.4) I, = / (Inz)" e~ dz = T™(1).
0

Proor. Differentiate (1.5) n-times with respect to the parameter s. U

Example 2.2. Formula 4.331.1 in [2] states that'
> — QT 6
(2.5) e " Inedr =——
0 2
where § = vy + In u. This value follows directly by the change of variables s = uz and

the classical special value IV(1) = —v. The reader will find in chapter 9 of [1] details
on this constant. In particular, if g =1, then § = v and we obtain (1.3):

(2.6) / e " Inzdr =—y.
0

The change of variables z = e~ yields the form

(2.7 / te te e dt = .

IThe table uses C for the Euler constant.



AN EXP-LOG FAMILY 33

Many of the evaluations are given in terms of the polygamma function

(2.8) P(x) = % InT(z).

Properties of ¢ are summarized in Chapter 1 of [4]. A simple representation is

(2.9) P(x) = nh_)rr;o <lnn - Z . i k) ,

k=0

from where we conclude that

(2.10) P(1) = nh_)ngo (lnn - Z i) = —,

k=1
this being the most common definition of the Euler’s constant ~. This is precisely the
identity I'(1) = —.
The derivatives of v satisfy

(2.11) ¥ (@) = (1)l ((m +1,2),
where

s 1
(2.12) ¢(z,9) -—;W

is the Hurwitz zeta function. This function appeared in [3] in the evaluation of some
logarithmic integrals.

Example 2.3. Formula 4.335.1 in [2] states that

™

e} 1 2
2.13 / e " (Inz)? doe = = [ —|—(52} )
(2.13) e ey o= 1 [

where § = v+1n p as before. This can be verified using the procedure described above:
the change of variable s = px yields

(o)
. 1
(2.14) / e (Inz)® do = m (I —2Llnp+ Iy In? 1),
0

where I, is defined in (2.4). To complete the evaluation we need some special values:
(1) =1 is elementary, I'V(1) = ¢(1) = —v appeared above and using (2.11) we have

oy @) (@)’
(2.15) v =15~ () -
The value
(2.10 vy=c) =T,

where ((z) = ((z,1) is the Riemann zeta function, comes directly from (2.11). Thus

(2.17) I(1) = ((2) + 72
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Let 4+ =1 in (2.13) to produce

(2.18) /0 T (Inz)? do = ¢(2) + 42

Similar arguments yields formula 4.335.3 in [2]:
(2.19) /Oo e " (Inz)® do = —% [6% + 3m%6 — 9" (1)],
where, as usual, § :O’y + In p. The special case u = 1 now yields
(2.20) /OO e~ (Inz)® dr = —° — Lr?y + 9" (1).
Using the evaluation ’
(2.21) $7(1) = —2¢(3)
produces
(2.22) /000 e (Inz)® de = —° — i’y —2((3).

Problem 2.4. In [1], page 203, we introduced the notion of weight for some real
numbers. In particular, we have assigned ((j) the weight j. Differentiation increases
the weight by 1, so that ¢’(3) has weight 4. The task is to check that the integral

(2.23) I, ::/ e " (Inx)" do
0
is a homogeneous form of weight n.

3. A small variation

Similar arguments are now employed to produce a larger family of integrals. The
representation

o0
(3.1) / ¥ e M dy = 1T (s),
0

is differentiated n times with respect to the parameter s to produce

(3.2) /Ooo (Inz)" x5 te " dx = <§S>n [n°L(s)] .

The special case n = 1 yields

o0 d
(3.3) / e M Inx dr
0

- [T

= () — I pT(s)

= pT(s) ($(s) — Inpr).
This evaluation appears as 4.352.1 in [2]. The special case u = 1 yields

(3.4) / e " Inwdr = T'(s),
0
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that is 4.352.4 in [2].
Special values of the gamma function and its derivatives yield more concrete eval-
uations. For example, the functional equation

(35) Ya+1) = vi@) + 1,

that is a direct consequence of I'(x + 1) = aT'(z), yields
n 1

3.6 1) =— —.

(3. st =+

Replacing s =n + 1 in (3.3) we obtain

n

> n_—pur n! 1
(3.7) /0 me"lnxdm:ﬂnﬂ<zk—7—lnu>,

k=1

that is 4.352.2 in [2].
The final formula of Section 4.352 in [2] is 4.352.3

oo n
n—1/2 —ux _ ﬁ(?n - 1)” 1 _ .
/0 x e " Inxdr = TIEE 2 E =1 In(4p)| .

k=1

This can also be obtained from (3.3) by using the classical values

N3

Fn+1) = on (2n — )N
Yn+3) = —7+2<Z2k1_1—1n2>.
k=1

The details are left to the reader.

Section 4.353 of [2] contains three peculiar combinations of integrands. The first
two of them can be verified by the methods described above: formula 4.353.1 states

(3.8) /Ooo(x —v)z" e " Inxdr =T'(v),

and 4.353.2 is

o 1 2n -1 /7
3.9 / x—n—Lg" 27 lnxdm:\/>.
39 o o) e\
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