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The integrals in Gradshteyn and Ryzhik.
Part 3: Combinations of logarithms and exponentials

Victor H. Moll

Abstract. We present the evaluation of a family of exponential-logarithmic in-
tegrals. These have integrands of the form P (etx, ln x) where P is a polynomial.

The examples presented here appear in sections 4.33, 4.34 and 4.35 in the classical

table of integrals by I. Gradshteyn and I. Ryzhik.

1. Introduction

This is the third in a series of papers dealing with the evaluation of definite
integrals in the table of Gradshteyn and Ryzhik [2]. We consider here problems of the
form

(1.1)
∫ ∞

0

e−tx P (lnx) dx,

where t > 0 is a parameter and P is a polynomial. In future work we deal with the
finite interval case

(1.2)
∫ b

a

e−tx P (lnx) dx,

where a, b ∈ R+ with a < b and t ∈ R. The classical example

(1.3)
∫ ∞

0

e−x lnx dx = −γ,

where γ is Euler’s constant is part of this family. The integrals of type (1.1) are linear
combinations of

(1.4) Jn(t) :=
∫ ∞

0

e−tx (lnx)n
dx.
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The values of these integrals are expressed in terms of the gamma function

(1.5) Γ(s) =
∫ ∞

0

xs−1e−x dx

and its derivatives.

2. The evaluation

In this section we consider the value of Jn(t) defined in (1.4). The change of
variables s = tx yields

(2.1) Jn(t) =
1
t

∫ ∞
0

e−s (ln s− ln t)n
ds.

Expanding the power yields Jn as a linear combination of

(2.2) Im :=
∫ ∞

0

e−x (lnx)m
dx, 0 6 m 6 n.

An analytic expression for these integrals can be obtained directly from the rep-
resentation of the gamma function in (1.5).

Proposition 2.1. For n ∈ N we have

(2.3)
∫ ∞

0

(lnx)n
xs−1e−x dx =

(
d

ds

)n

Γ(s).

In particular

(2.4) In :=
∫ ∞

0

(lnx)n
e−x dx = Γ(n)(1).

Proof. Differentiate (1.5) n-times with respect to the parameter s. �

Example 2.2. Formula 4.331.1 in [2] states that1

(2.5)
∫ ∞

0

e−µx lnx dx = − δ
µ

where δ = γ + lnµ. This value follows directly by the change of variables s = µx and
the classical special value Γ′(1) = −γ. The reader will find in chapter 9 of [1] details
on this constant. In particular, if µ = 1, then δ = γ and we obtain (1.3):

(2.6)
∫ ∞

0

e−x lnx dx = −γ.

The change of variables x = e−t yields the form

(2.7)
∫ ∞
−∞

t e−t e−e−t

dt = γ.

1The table uses C for the Euler constant.
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Many of the evaluations are given in terms of the polygamma function

(2.8) ψ(x) =
d

dx
ln Γ(x).

Properties of ψ are summarized in Chapter 1 of [4]. A simple representation is

(2.9) ψ(x) = lim
n→∞

(
lnn−

n∑
k=0

1
x+ k

)
,

from where we conclude that

(2.10) ψ(1) = lim
n→∞

(
lnn−

n∑
k=1

1
k

)
= −γ,

this being the most common definition of the Euler’s constant γ. This is precisely the
identity Γ′(1) = −γ.

The derivatives of ψ satisfy

(2.11) ψ(m)(x) = (−1)m+1m! ζ(m+ 1, x),

where

(2.12) ζ(z, q) :=
∞∑

n=0

1
(n+ q)z

is the Hurwitz zeta function. This function appeared in [3] in the evaluation of some
logarithmic integrals.

Example 2.3. Formula 4.335.1 in [2] states that

(2.13)
∫ ∞

0

e−µx (lnx)2 dx =
1
µ

[
π2

6
+ δ2

]
,

where δ = γ+lnµ as before. This can be verified using the procedure described above:
the change of variable s = µx yields

(2.14)
∫ ∞

0

e−µx (lnx)2 dx =
1
µ

(
I2 − 2I1 lnµ+ I0 ln2 µ

)
,

where In is defined in (2.4). To complete the evaluation we need some special values:
Γ(1) = 1 is elementary, Γ′(1) = ψ(1) = −γ appeared above and using (2.11) we have

(2.15) ψ′(x) =
Γ′′(x)
Γ(x)

−
(

Γ′(x)
Γ(x)

)2

.

The value

(2.16) ψ′(1) = ζ(2) =
π2

6
,

where ζ(z) = ζ(z, 1) is the Riemann zeta function, comes directly from (2.11). Thus

(2.17) Γ′′(1) = ζ(2) + γ2.
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Let µ = 1 in (2.13) to produce

(2.18)
∫ ∞

0

e−x (lnx)2 dx = ζ(2) + γ2.

Similar arguments yields formula 4.335.3 in [2]:

(2.19)
∫ ∞

0

e−µx (lnx)3 dx = − 1
µ

[
δ3 + 1

2π
2δ − ψ′′(1)

]
,

where, as usual, δ = γ + lnµ. The special case µ = 1 now yields

(2.20)
∫ ∞

0

e−x (lnx)3 dx = −γ3 − 1
2π

2γ + ψ′′(1).

Using the evaluation

(2.21) ψ′′(1) = −2ζ(3)

produces

(2.22)
∫ ∞

0

e−x (lnx)3 dx = −γ3 − 1
2π

2γ − 2ζ(3).

Problem 2.4. In [1], page 203, we introduced the notion of weight for some real
numbers. In particular, we have assigned ζ(j) the weight j. Differentiation increases
the weight by 1, so that ζ ′(3) has weight 4. The task is to check that the integral

(2.23) In :=
∫ ∞

0

e−x (lnx)n
dx

is a homogeneous form of weight n.

3. A small variation

Similar arguments are now employed to produce a larger family of integrals. The
representation

(3.1)
∫ ∞

0

xs−1e−µx dx = µ−sΓ(s),

is differentiated n times with respect to the parameter s to produce

(3.2)
∫ ∞

0

(lnx)n
xs−1e−µx dx =

(
d

ds

)n [
µ−sΓ(s)

]
.

The special case n = 1 yields∫ ∞
0

xs−1e−µx lnx dx =
d

ds

[
µ−sΓ(s)

]
(3.3)

= µ−s (Γ′(s)− lnµΓ(s))
= µ−sΓ(s) (ψ(s)− lnµ) .

This evaluation appears as 4.352.1 in [2]. The special case µ = 1 yields

(3.4)
∫ ∞

0

xs−1e−x lnx dx = Γ′(s),
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that is 4.352.4 in [2].
Special values of the gamma function and its derivatives yield more concrete eval-

uations. For example, the functional equation

(3.5) ψ(x+ 1) = ψ(x) +
1
x
,

that is a direct consequence of Γ(x+ 1) = xΓ(x), yields

(3.6) ψ(n+ 1) = −γ +
n∑

k=1

1
k
.

Replacing s = n+ 1 in (3.3) we obtain

(3.7)
∫ ∞

0

xne−µx lnx dx =
n!
µn+1

(
n∑

k=1

1
k
− γ − lnµ

)
,

that is 4.352.2 in [2].
The final formula of Section 4.352 in [2] is 4.352.3∫ ∞

0

xn−1/2e−µx lnx dx =
√
π (2n− 1)!!
2n µn+1/2

[
2

n∑
k=1

1
2k − 1

− γ − ln(4µ)

]
.

This can also be obtained from (3.3) by using the classical values

Γ(n+ 1
2 ) =

√
π

2n
(2n− 1)!!

ψ(n+ 1
2 ) = −γ + 2

(
n∑

k=1

1
2k − 1

− ln 2

)
.

The details are left to the reader.

Section 4.353 of [2] contains three peculiar combinations of integrands. The first
two of them can be verified by the methods described above: formula 4.353.1 states

(3.8)
∫ ∞

0

(x− ν)xν−1e−x lnx dx = Γ(ν),

and 4.353.2 is

(3.9)
∫ ∞

0

(µx− n− 1
2 )xn− 1

2 e−µx lnx dx =
(2n− 1)!!

(2µ)n

√
π

µ
.
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