Vol. 12 (2006)
Articles

A note on \(\aleph_0\) - spaces

Yin Ge
Department of Mathematics, Suzhou University, Suzhou, P.R. China

Published 2006-03-15

Keywords

  • strong cs-network,
  • weakly hereditarily closure-preserving family,
  • sequential space,
  • \(\aleph_0\) - spaces

How to Cite

A note on \(\aleph_0\) - spaces. (2006). Scientia Series A: Mathematical Sciences, 12, 1-4. https://revistas.usm.cl/scientia/article/view/75

Abstract

In this paper, we prove that a space is an \(\aleph_0\)- space if it is an \(\aleph_1\)-compact space with a \(\sigma\)-weakly hereditarily closure-preserving strong \(cs\)-network. As an application of this result, we prove that a space with a nontrivial convergent sequence is an \(\aleph_0\)-space if it has a \(\sigma\)-weakly hereditarily closure-preserving strong \(cs\)-network.

Downloads

Download data is not yet available.