Vol. 33 (2023)
Articles

Wallis m-integrals and their properties

Veselin Jungic
Department of Mathematics - Simon Fraser University
Andriana Burazin
Department of Mathematical and Computational Sciences University of Toronto Mississauga
Miroslav Lovric
Departament of Mathematics and Statistics McMaster University

Published 2023-05-25

Keywords

  • Wallis,
  • Integrals,
  • Limits,
  • Series

Abstract

This paper investigates asymptotic behaviour of the m-Wallis integrals

\[\ W(m,k) = \int_{0}^{\frac{\pi}{2}} x^{m}\cos^k x \, dx, m \in \mathbb{N} \cup \{0\},k \in \mathbb{N}.\]