Vol. 15 (2007)
Articles

Classical Schottky Uniformizations of Genus 2A Package for Mathematica

Rubén A. Hidalgo
Departamento de Matematica, Universidad Tecnica Federico Santa María Casilla 110-V, Valpara´ıso, Chile.

Publicado 2007-08-15

Palabras clave

  • Real Schottky groups,
  • Hyperbolic polygons,
  • Riemann matrices

Cómo citar

Classical Schottky Uniformizations of Genus 2A Package for Mathematica. (2007). Scientia, 15, 67-94. https://revistas.usm.cl/scientia/article/view/103

Resumen

The general theory of Riemann surfaces asserts that a closed Riemann surface \(S\) of genus \(g \geq 2\) be seen as (i) the quotient by a Kleinian group \(G\) or (ii) a plane algebraic curve \(C\) (possible with singularities) or (iii) a symmetric complex \(g × g\) matrix \(Z\) with positive imaginary part (a Riemann period matrix). Numerical uniformization problem ask for numerical relations between these objects for suitable choices of \(G, C\) and \(Z\). In this note we discuss the case of genus two for \(G\) a classical Schottky group. The algorithm has been implemented into a mathematica package for the case of M-real curves of genus 2, but it can easily be rewritten for the general case.

Descargas

Los datos de descarga todavía no están disponibles.