Vol. 18 (2009)
Articles

On the blow-up semidiscretizations in time of some non-local parabolic problems with Neumann boundary conditions

Théodore K. Boni
Institut National Polytechnique, Houphout-Boigny de Yamoussoukro, BP 1093 Yamoussoukro, (Cte d’Ivoire)
Thibaut K. Kouakou
Universit d’Abobo-Adjam, UFR-SFA, Dpartement de Mathmatiques et Informatiques, 16 BP 372 Abidjan 16, (Cte d’Ivoire)

Publicado 2009-02-26

Palabras clave

  • Nonlocal diffusion,
  • blow-up,
  • numerical blow-up time.

Cómo citar

On the blow-up semidiscretizations in time of some non-local parabolic problems with Neumann boundary conditions. (2009). Scientia, 18, 1-16. https://revistas.usm.cl/scientia/article/view/126

Resumen

In this paper, we address the following initial value problem \[\begin{align} u_t &= \int_\Omega J(x-y)(u(y,t) - u(x,t))dy + f(u) \quad \text{in } \overline{\Omega} \times (0,T), \\ u(x,0) &= \varphi(x) \geq 0 \quad \text{in } \Omega, \end{align}\]

 where \(f : [0,\infty) \to [0,\infty)\) is a \(C^1\) nondecreasing function, \(\int^\infty \frac{ds}{f(s)} < \infty\), \(\Omega\) is a bounded domain in \(\mathbb{R}^N\) with smooth boundary \(\partial\Omega, J : \mathbb{R}^N \to \mathbb{R}\) is a kernel which is nonnegative and bounded in \(\mathbb{R}^N\). Under some conditions, we show that the solution of a semidiscrete form of the above problem blows up in a finite time and estimate its semidiscrete blow-up time. We also prove that the semidiscrete blow-up time converges to the real one when the mesh size goes to zero. Finally, we give some numerical results to illustrate our analysis.

Descargas

Los datos de descarga todavía no están disponibles.