Publicado 2013-10-12
Palabras clave
- Arctangent,
- recurrence,
- valuations
Derechos de autor 2025 Scientia

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Cómo citar
An arithmetic conjecture on an arctangent sum. (2013). Scientia, 24, 90-119. https://revistas.usm.cl/scientia/article/view/214
Resumen
A sequence \(x_n\), defined in terms of a sum of arctangent values, satisfies the nonlinear recurrence \(x_n = (n + x_{n-1})/(1 - nx_{n-1})\), with \(x_1 = 1\), which has been conjectured not to be an integer for \(n \geq 5\). This problem is analyzed here in terms of divisibility questions of an associated sequence. Properties of this new sequence are employed to prove that the subsequences \(\{x_{19n+5} : n \in \mathbb{N}\}\) and \(\{x_{19n+13} : n \in \mathbb{N}\}\) contain no integer values.
Descargas
Los datos de descarga todavía no están disponibles.