Vol. 24 (2013)
Articles

An arithmetic conjecture on an arctangent sum

Victor H. Moll
Department of Mathematics, Tulane University, New Orleans, LA 70118 U.S.A

Publicado 2013-10-12

Palabras clave

  • Arctangent,
  • recurrence,
  • valuations

Cómo citar

Resumen

A sequence \(x_n\), defined in terms of a sum of arctangent values, satisfies the nonlinear recurrence \(x_n = (n + x_{n-1})/(1 - nx_{n-1})\), with \(x_1 = 1\), which has been conjectured not to be an integer for \(n \geq 5\). This problem is analyzed here in terms of divisibility questions of an associated sequence. Properties of this new sequence are employed to prove that the subsequences \(\{x_{19n+5} : n \in \mathbb{N}\}\) and \(\{x_{19n+13} : n \in \mathbb{N}\}\) contain no integer values.

Descargas

Los datos de descarga todavía no están disponibles.