Vol. 30 (2020)
Articles

Inequalities of Jensen’s Type for \(\ K-\) Bounded Modulus Convex Complex Functions

Sever Dragomir
1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia. DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa.
portada

Publicado 2024-07-11

Palabras clave

  • Complex integral,
  • Continuous functions,
  • Holomorphic functions,
  • Jensen’s inequality,
  • Hermite-Hadamard inequality,
  • Midpoint inequality,
  • Trapezoid inequality
  • ...Más
    Menos

Resumen

Let \(\ D \subset \mathbb{C}\) be a convex domain of complex numbers and \(\ K > 0.\) 

We say that the function \(\ f : D \subset \mathbb{C} \to \mathbb{C}\) is called \(\ K-\) bounded modulus convex, for the given \(\ K > 0,\) if it satisfies the condition

                              \(\|(1-\lambda) f(x) + \lambda f(y) - f((1-\lambda)x + \lambda y)| \leq \frac{1}{2}K\lambda(1-\lambda) |x-y|^2\)

for any \(\ x, y \in D \text{ and } \lambda \in [0,1]\). 

         In this paper we establish some new Jensen’s type inequalities for the complex integral on \(\gamma,\) a smooth path from

 \(\mathbb{C}\)  and  \(\ K-\) Bounded  modulus convex functions. Some examples for the complex exponential and complex logarithm are also given.