Vol. 10 (2004)
Articles

Review of some iterative root¯finding methods from adynamical point of view

Sergio Amat
Departamento de Matemática ´Aplicada y Estadística, Universidad Politécnica de Cartagena
Sonia Busquier
Departamento de Matemática ´Aplicada y Estadística, Universidad Politécnica de Cartagena
Sergio Plaza
Departamento de Matemáticas ´Facultad de Ciencias Universidad de Santiago de Chile

Publicado 2004-08-07

Palabras clave

  • Iterative methods,
  • dynamics,
  • rational maps,
  • attracting periodic orbits

Cómo citar

Review of some iterative root¯finding methods from adynamical point of view. (2004). Scientia, 10, 3-35. https://revistas.usm.cl/scientia/article/view/65

Resumen

From a dynamical point of view applied to complex polynomials, we
study a number of root{¯nding iterative methods. We consider Newton's method, Newton's method for multiple roots, Jarratt's method, the super{Halley method, the convex as well as the double convex acceleration of Whittaker's method, the methods of Chebyshev, Stirling, and Ste®ensen, among others. Since all of the iterative root{¯nding methods we study satisfy the Scaling Theorem, except for Stirling's method and that of Ste®ensen, we obtain their conjugacy classes.

Descargas

Los datos de descarga todavía no están disponibles.