Vol. 27 (2016)
Articles

Maximum Likelihood Estimators Under Continuity-Compactness Assumptions

Julio Saucedo-Zul
Facultad de Ciencias Físico Matemáticas, Universidad Autonoma de Coahuila, Unidad Camporredondo, Edificio A. Saltillo COAH, México.
Haydée De la Garza Rodríguez
Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Coahuila, Unidad Camporredondo, Edificio A. Saltillo COAH, México.

Publicado 2016-03-21

Palabras clave

  • Consistency of estimators,
  • Concave function,
  • Law of large numbers,
  • Convergence almost surely,
  • Closed and bounded set,
  • Open set
  • ...Más
    Menos

Cómo citar

Maximum Likelihood Estimators Under Continuity-Compactness Assumptions. (2016). Scientia, 27, 1-14. https://revistas.usm.cl/scientia/article/view/201

Resumen

This work concerns with the consistency property of maximum likeli-hood estimators in a parametric statistical model. Assuming that the parameter space is compact and that the density function is Lipschitz continuous on the parameter, it is shown that the maximum likelihood technique generates estimators that, as the sample size increases, converge to the true parameter value with probability 1. The objective of the analysis is to illustrate the application of three basic statistical and analytical results: the law of large numbers, Jensen's inequality, and the Heine-Borel property of compact sets.

Descargas

Los datos de descarga todavía no están disponibles.