Vol. 27 (2016)
Articles

Maximum Likelihood Estimators Under Continuity-Compactness Assumptions

Julio Saucedo-Zul
Facultad de Ciencias Físico Matemáticas, Universidad Autonoma de Coahuila, Unidad Camporredondo, Edificio A. Saltillo COAH, México.
Haydée De la Garza Rodríguez
Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Coahuila, Unidad Camporredondo, Edificio A. Saltillo COAH, México.

Published 2016-03-21

Keywords

  • Consistency of estimators,
  • Concave function,
  • Law of large numbers,
  • Convergence almost surely,
  • Closed and bounded set,
  • Open set
  • ...More
    Less

How to Cite

Maximum Likelihood Estimators Under Continuity-Compactness Assumptions. (2016). Scientia Series A: Mathematical Sciences, 27, 1-14. https://revistas.usm.cl/scientia/article/view/201

Abstract

This work concerns with the consistency property of maximum likeli-hood estimators in a parametric statistical model. Assuming that the parameter space is compact and that the density function is Lipschitz continuous on the parameter, it is shown that the maximum likelihood technique generates estimators that, as the sample size increases, converge to the true parameter value with probability 1. The objective of the analysis is to illustrate the application of three basic statistical and analytical results: the law of large numbers, Jensen's inequality, and the Heine-Borel property of compact sets.

Downloads

Download data is not yet available.