Vol. 9 (2003)
Articles

Long-pin perturbations of the trivial solution for Hele-Shawcorner flows

Irina Markina
Departamento de Matemática, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile.
Alexander Vasiliev
Departamento de Matemática, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile.

Published 2025-08-11

DOI:

https://doi.org/10.71712/

Keywords

  • free boundary problem,
  • conformal map,
  • complex analysis,
  • univalent function,
  • hypergeometric function

How to Cite

Markina, I., & Vasiliev, A. (2025). Long-pin perturbations of the trivial solution for Hele-Shawcorner flows. Scientia Series A: Mathematical Sciences, 9, 33-43. https://doi.org/10.71712/

Abstract

We consider two-dimensional Hele-Shaw corner flows without effect of the surface tension and with an interface extending to the infinity along one of the walls. Explicit solutions that present a ”long-pin” deformations of the trivial solution are got. Making use of the Polubarinova-Galin approach we derive parametric equations for the moving interface in terms of univalent mappings of a canonical domain. For the right angle we repeat a result by Leo P. Kadanoff.

Downloads

Download data is not yet available.