Vol. 36 (2026)
Articles

A four parameter integral identity and a few consequences

M.L. Glasser
Department of Physics, Clarkson University. Departamento de Física Teórica, Universidad de Valladolid

Published 2025-02-09

DOI:

https://doi.org/10.71712/f1ya-ec51

Keywords

  • Integral Identities,
  • Bessel Function,
  • Struve functions,
  • Elliptic Integral

How to Cite

Glasser, M. (2025). A four parameter integral identity and a few consequences. Scientia Series A: Mathematical Sciences, 36, 9-12. https://doi.org/10.71712/f1ya-ec51

Abstract

The identity

\[
\int_0^\infty \frac{e^{-ax} \, e^{-b\sqrt{x^2 + 2cx + a^2}}}{\sqrt{x^2 + 2cx + b^2}} \, dx
=
\int_0^\infty \frac{e^{-bx} \, e^{-a\sqrt{x^2 + 2cx + b^2}}}{\sqrt{x^2 + 2cx + a^2}} \, dx
\]

is derived, applied to the Struve function $H_0$, and used to deduce the reduction formula

\[
\int_0^\infty \frac{F(\sqrt{x^2 + 2cx + b^2} + x)}{\sqrt{x^2 + 2cx + b^2}} \, dx
=
\int_0^\infty f(t)e^{-t} E_1[(c+b)t] \, dt,
\]

where $F$ is arbitrary.

Downloads

Download data is not yet available.