Vol. 29 (2019)
Articles

A closed-form solution might be given by a tree. Valuations of quadratic polynomials

Leyda Almodovar
Department of Mathematics, University of Iowa , Iowa City, IA 52242, U.S.A.
Alyssa N. Byrnes
Department of Mathematics, Tulane University, New Orleans, U.S.A.
Julie Fink
330 Hudson St, 7th Floor, New York, NY 10013, U.S.A.
Xiao Guan
Department of Mathematics, Tulane University, New Orleans, U.S.A
Aashita Kesarwani
Department of Mathematics, Tulane University, New Orleans, U.S.A.
Gary Lavigne
Department of Mathematics, Tulane University, New Orleans, U.S.A
Victor H. Moll
Department of Mathematics, Tulane University, New Orleans, U.S.A.
Luis A. Medina
Departamento de Matematicas, Universidad de Puerto Rico, Ri0 Piedras, San Juan, PR 00936-8377
Isabelle Nogues
e Department of Mathematics, Princeton University, Princeton, NJ 08544, U.S.A
Eric Rowland
Laboratoire de Combinatoire et d’informatique Math´ematique (LaCIM), Universite du Quebec a Montreal, CP 8888, Succ. Centre-ville, Montr ´ ´eal (Quebec) H3C 3P8, CANADA
Amber Yuan
g Department of Mathematics, University of Chicago, Chicago, IL 60637, U.S.A.
Portada

Published 2024-09-04

Keywords

  • valuations,
  • quadratic polynomials,
  • congruences modulo 8

Abstract

The \(p-\)adic valuation of an integer \(x\) is the largest power of the prime \(p\) that divides \(x\) . It is denoted by \(\nu_p(x)\). This work describes properties of the valuation \(\nu_2(n^2 + a)\), with \(a \in \mathbb{N}\) . A distinction of the behavior of these valuations for a \(\equiv 7 \pmod{8}\) or not is presented.